8.閱讀下面的程序框圖,運行相應(yīng)的程序,則輸出的K和S的值分別為( 。
A.9,$\frac{4}{9}$B.11,$\frac{5}{11}$C.11,$\frac{10}{11}$D.13,$\frac{12}{13}$

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S,K的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
S=0,K=1
不滿足條件K>10,執(zhí)行循環(huán)體,S=$\frac{1}{1×3}$,K=3
不滿足條件K>10,執(zhí)行循環(huán)體,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,K=5
不滿足條件K>10,執(zhí)行循環(huán)體,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,K=7
不滿足條件K>10,執(zhí)行循環(huán)體,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$,K=9
不滿足條件K>10,執(zhí)行循環(huán)體,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$+$\frac{1}{9×11}$,K=11
滿足條件K>10,退出循環(huán),輸出K=11,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$+$\frac{1}{9×11}$=$\frac{1}{2}×$(1-$\frac{1}{3}$$+\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{9}$-$\frac{1}{11}$)=$\frac{1}{2}×$(1-$\frac{1}{11}$)=$\frac{5}{11}$.
故選:B.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項和為Sn,并且滿足2Sn=an2+n,an>0.猜想{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的頂點A(1,5),AB邊上的中線CM所在直線方程為x-2y+5=0,AC邊上的高BH所在直線方程為2x-y+5=0,求:
(Ⅰ)頂點C的坐標(biāo);
(Ⅱ)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某年高考中,某省10萬考生在滿分為150分的數(shù)學(xué)考試中,成績分布近似服從正態(tài)分布N(110,100),則分?jǐn)?shù)位于區(qū)間(130,150]分的考生人數(shù)近似為( 。
(已知若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.
A.1140B.1075C.2280D.2150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某程序框圖如圖所示,若輸入的n=10,則輸出結(jié)果為( 。
A.$\frac{1}{10}$B.$\frac{8}{9}$C.$\frac{9}{10}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(Ⅰ)求函數(shù)f(x)的對稱中心和單調(diào)減區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個長度單位后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知兩個圓的方程分別為x2+y2=4和x2+y2+2y-6=0,則它們的公共弦長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α的終邊上的一點坐標(biāo)為$({1,\sqrt{3}})$,則sinα為( 。
A.$\frac{{\sqrt{3}}}{2}$B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等差數(shù)列{an}中,若a1+a2=4,a9+a10=36,Sn是數(shù)列{an}的前n項和,則S10=100.

查看答案和解析>>

同步練習(xí)冊答案