【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),當(dāng)x∈[0,1]時,f(x)=x,那么在區(qū)間[﹣1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4個不同的根,則k的取值范圍是

【答案】(- , 0)
【解析】解:∵當(dāng)x∈[0,1]時,f(x)=x,∴f(0)=0,
∵f(﹣x)=f(x),且f(x+2)=f(x)+f(2),
∴函數(shù)y=f(x)為偶函數(shù),
令x=﹣2,則f(﹣2+2)=f(﹣2)+f(2)=f(0)=0,
即2f(2)=0,則f(2)=0,
即f(x+2)=f(x)+f(2)=f(x),
即函數(shù)f(x)是周期為2的周期數(shù)列,
若x∈[﹣1,0],則﹣x∈[0,1]時,
此時f(﹣x)=﹣x=f(x),
∴f(x)=﹣x,x∈[﹣1,0],
令y=kx+k+1,則化為y=k(x+1)+1,即直線y=k(x+1)+1恒過M(﹣1,1).
作出f(x),x∈[﹣1,3]的圖象與直線y=k(x+1)+1,
如圖所示,由圖象可知當(dāng)直線介于直線MA與MB之間時,
關(guān)于x的方程f(x)=kx+k+1恰有4個不同的根,
又∵kMA=0,kMB=- ,
∴-<k<0.
所以答案是:(- , 0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】面對擁堵難題,濟(jì)南治堵不舍晝夜.軌道交通1號線已于2019年元旦通車試運(yùn)行,比原定工期提前8個月,其他各條地鐵線路的建設(shè)也正在如火如荼的進(jìn)行中,完工投入運(yùn)行后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔為(單位:分鐘),并且.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔相關(guān),當(dāng)時,地鐵為滿載狀態(tài),載客量為450人;當(dāng)時,載客量會減少,減少的人數(shù)的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為(單位:人).

(1)求的表達(dá)式,并求當(dāng)發(fā)車時間間隔為5分鐘時,地鐵的載客量;

(2)若該線路每分鐘的利潤為(單位:元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了檢查一條流水線的生產(chǎn)情況,從該流水線上隨機(jī)抽取40件產(chǎn)品,測量這些產(chǎn)品的重量(單位:克),整理后得到如下的頻率分布直方圖(其中重量的分組區(qū)間分別為(490,495],(495,500],(500,505],(505,510],(510,515]) (I)若從這40件產(chǎn)品中任取兩件,設(shè)X為重量超過505克的產(chǎn)品數(shù)量,求隨機(jī)變量X的分布列;
(Ⅱ)若將該樣本分布近似看作總體分布,現(xiàn)從該流水線上任取5件產(chǎn)品,求恰有兩件產(chǎn)品的重量超過505克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù),求上的最小值;

記函數(shù),若函數(shù)上有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍,并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了確定工效,進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:

加工零件個數(shù)

10

20

30

40

50

加工時間(分鐘)

64

69

75

82

90

經(jīng)檢驗(yàn),這組樣本數(shù)據(jù)的兩個變量具有線性相關(guān)關(guān)系,那么對于加工零件的個數(shù)與加工時間這兩個變量,下列判斷正確的是(

A. 負(fù)相關(guān),其回歸直線經(jīng)過點(diǎn) B. 正相關(guān),其回歸直線經(jīng)過點(diǎn)

C. 負(fù)相關(guān),其回歸直線經(jīng)過點(diǎn) D. 正相關(guān),其回歸直線經(jīng)過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且cosC+=1.
(1)求角A的大;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).

(Ⅰ)若函數(shù)上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)處的切線方程為.求證:對任意的,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:這種消費(fèi)品的進(jìn)價為每件14元;該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;每月需各種開支2 000.

1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是奇函數(shù).

1求常數(shù)的值;

2,試判斷函數(shù)的單調(diào)性,并加以證明;

3,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值

查看答案和解析>>

同步練習(xí)冊答案