在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為C(2,
π
3
),半徑R=
5
,求圓C的極坐標(biāo)方程.
分析:先利用圓心坐標(biāo)與半徑求得圓的直角坐標(biāo)方程,再利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得圓C的極坐標(biāo)方程.
解答:解:將圓心C(2,
π
3
)化成直角坐標(biāo)為(1,
3
),半徑R=
5
,(2分)
故圓C的方程為(x-1)2+(y-
3
2=5.(4分)
再將C化成極坐標(biāo)方程,得(ρcosθ-1)2+(ρcosθ-
3
2=5.(6分)
化簡(jiǎn),得ρ2-4ρcos(θ-
π
3
)+1=0,此即為所求的圓C的方程.(10分)
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,即利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,已知圓ρ=4cosθ的圓心為A,點(diǎn)B(6
2
,
4
)
,則線(xiàn)段AB的長(zhǎng)為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線(xiàn)l:ρsin(θ-
π
6
)=a截得的弦長(zhǎng)為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

坐標(biāo)系與參數(shù)方程,在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,
π3
)
,半徑為3,點(diǎn)Q在圓周上運(yùn)動(dòng),
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)O重合,x軸非負(fù)半軸與極軸重合,M為OQ中點(diǎn),求點(diǎn)M的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•湖南模擬)在極坐標(biāo)系中,已知圓ρ=2cosθ與雙曲線(xiàn)ρ2cos2θ-4ρ2sin2θ=4.則它們的交點(diǎn)的直角坐標(biāo)為
(2,0)
(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓ρ=2cosθ與直線(xiàn)3ρcosθ+4ρsinθ+a=0相切,則實(shí)數(shù)a的值為
2或-7
2或-7

查看答案和解析>>

同步練習(xí)冊(cè)答案