【題目】網(wǎng)購逐步走入百姓生活,網(wǎng)絡(luò)(電子)支付方面的股票受到一些股民的青睞.某單位4位熱愛炒股的好朋友研究后決定購買“生意寶”和“九州通“這兩支股票中的一支.他們約定:每人通過擲一枚質(zhì)地均勻的骰子決定購買哪支股票,擲出點(diǎn)數(shù)為5或6的人買“九州通”股票,擲出點(diǎn)數(shù)為小于5的人買“生意寶”股票,且必須從“生意寶”和“九州通”這兩支股票中選擇一支股票購買.
(1)求這4人中恰有1人購買“九州通”股票的機(jī)率;
(2)用,分別表示這4人中購買“生意寶”和“九州通”股票的人數(shù),記,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.
【答案】(1)(2)分布列見解析,
【解析】
(1)根據(jù)相互獨(dú)立事件的概率公式計(jì)算;
(2)求出的各種取值對(duì)應(yīng)的概率,從而得出分布列和數(shù)學(xué)期望.
(1)由于擲一枚質(zhì)地均勻的骰子,擲出點(diǎn)數(shù)為5或6的概率為,因此這4人中每人購買“九州通”股票的概率為,購買“生意寶”股票的概率為.
設(shè)“這4人中恰有人購買‘九州通’股票”為事件(,1,2,3,4),則(,1,2,3,4).
這4人中恰有1人購買“九州通”股票的概率.
(2)易知X的所有可能取值為0,3,4.
,
.
所以X的分布列是
X | 0 | 3 | 4 |
P |
隨機(jī)變量X的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求的方程;
(2)如圖,經(jīng)過橢圓左頂點(diǎn)且斜率為的直線與交于兩點(diǎn),交軸于點(diǎn),點(diǎn)為線段的中點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,過點(diǎn)作(為坐標(biāo)原點(diǎn))垂直的直線交直線于點(diǎn),且面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,直角梯形可以通過直角梯形以直線為軸旋轉(zhuǎn)得到,且平面平面.
(1)求證:;
(2)設(shè)、分別為、的中點(diǎn),為線段上的點(diǎn)(不與點(diǎn)重合).
(i)若平面平面,求的長;
(ii)線段上是否存在,使得直線平面,若存在求的長,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形與均為菱形,,且.
(1)求證:平面;
(2)求二面角的余弦值;
(3)若為線段上的一點(diǎn),滿足直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中函數(shù),.
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)在上的最大值;
(3)當(dāng)時(shí),對(duì)于給定的正整數(shù),問:函數(shù)是否有零點(diǎn)?請(qǐng)說明理由.(參考數(shù)據(jù),,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:是正實(shí)數(shù),當(dāng)時(shí),,則稱是“—數(shù)列”.
(1)若是“—數(shù)列”且,寫出的所有可能值;
(2)設(shè)是“—數(shù)列”,證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;是等比數(shù)列當(dāng)且僅當(dāng)單調(diào)遞增;
(3)若是“—數(shù)列”且是周期數(shù)列(即存在正整數(shù),使得對(duì)任意正整數(shù),都有),求集合的元素個(gè)數(shù)的所有可能值的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)\.
(1)若且在處的切線垂直于y軸,求a的值;
(2)若對(duì)于任意,都有恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com