【題目】設(shè)函數(shù)\.
(1)若且在處的切線垂直于y軸,求a的值;
(2)若對于任意,都有恒成立,求a的取值范圍.
【答案】(1)1;(2).
【解析】
(1)先求得的導(dǎo)函數(shù),根據(jù)在處的切線垂直于y軸可知在處的導(dǎo)數(shù)等于0,代入即可求得的值.
(2)根據(jù)任意,都有恒成立,則成立,代入可得.結(jié)合函數(shù)單調(diào)性,使得在上滿足單調(diào)遞增且,即可得的取值范圍.再利用構(gòu)造函數(shù)法,證明在時(shí)滿足單調(diào)遞增即可.
(1),則,∴,
∵且在處的切線垂直于y軸,
∴,∴,又
∴
(2)對于任意,都有恒成立,則,所以,
,,,得,所以,即,
下面證明成立,
∴,令,,
∴令,,∴,
∴函數(shù)在上單調(diào)遞增,由,∴,
∴在上單調(diào)遞增,.
當(dāng)時(shí),,∴,∴函數(shù)在上單調(diào)遞增,
∴成立,
所以對于任意,都有恒成立.
當(dāng)時(shí),,而在上單調(diào)遞增,
∴存在唯一的,使得,即,,
且時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,
,而,
令,
∴,
令,得或,
或時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,
∴是的極小值,而,∴當(dāng)時(shí),有小于0的函數(shù)值,也即是有小于0的函數(shù)值,這與對于任意,都有恒成立,相矛盾,∴當(dāng)時(shí),不滿足題意,
綜上可得,a的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購逐步走入百姓生活,網(wǎng)絡(luò)(電子)支付方面的股票受到一些股民的青睞.某單位4位熱愛炒股的好朋友研究后決定購買“生意寶”和“九州通“這兩支股票中的一支.他們約定:每人通過擲一枚質(zhì)地均勻的骰子決定購買哪支股票,擲出點(diǎn)數(shù)為5或6的人買“九州通”股票,擲出點(diǎn)數(shù)為小于5的人買“生意寶”股票,且必須從“生意寶”和“九州通”這兩支股票中選擇一支股票購買.
(1)求這4人中恰有1人購買“九州通”股票的機(jī)率;
(2)用,分別表示這4人中購買“生意寶”和“九州通”股票的人數(shù),記,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面,四邊形是邊長為2的菱形,,,,E,F分別為AC,的中點(diǎn).
(1)求證:直線EF∥平面;
(2)設(shè)分別在側(cè)棱,上,且,求平面BPQ分棱柱所成兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義函數(shù)如下:對于實(shí)數(shù),如果存在整數(shù),使得,則.則下列結(jié)論:①是實(shí)數(shù)上的遞增函數(shù);②是周期為1的函數(shù);③是奇函數(shù);④函數(shù)的圖像與直線有且僅有一個(gè)交點(diǎn).則正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,函數(shù)在上有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若常數(shù),且對任何,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點(diǎn)為的中點(diǎn).
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點(diǎn),使∥面,
并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“偉大的變革—慶祝改革開放40周年大型展覽”于2019年3月20日在中國國家博物館閉幕,本次特展緊扣“改革開放40年光輝歷程”的主線,多角度、全景式描繪了我國改革開放40年波瀾壯闊的歷史畫卷.據(jù)統(tǒng)計(jì),展覽全程呈現(xiàn)出持續(xù)火爆的狀態(tài),現(xiàn)場觀眾累計(jì)達(dá)423萬人次,參展人數(shù)屢次創(chuàng)造國家博物館參觀紀(jì)錄,網(wǎng)上展館點(diǎn)擊瀏覽總量達(dá)4.03億次.
下表是2019年2月參觀人數(shù)(單位:萬人)統(tǒng)計(jì)表
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 3.0 | 3.1 | 2.5 | 2.3 | 5.4 | 6.8 | 6.2 | 6.7 | 5.5 | 4.9 | 3.2 | 3.0 | 2.7 | 2.5 |
日期 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人數(shù) | 2.4 | 2.9 | 3.2 | 2.8 | 2.9 | 2.3 | 3.0 | 2.9 | 3.1 | 3.0 | 3.1 | 3.1 | 3.1 | 3.0 |
根據(jù)表中數(shù)據(jù)回答下列問題:
(1)請將2019年2月前半月(1~14日)和后半月(15~28日)參觀人數(shù)統(tǒng)計(jì)對比莖葉圖填補(bǔ)完整,并通過莖葉圖比較兩組數(shù)據(jù)方差的大小(不要求計(jì)算出具體值,得出結(jié)論即可);
(2)將2019年2月參觀人數(shù)數(shù)據(jù)用該天的對應(yīng)日期作為樣本編號,現(xiàn)從中抽樣7天的樣本數(shù)據(jù).若抽取的樣本編號是以4為公差的等差數(shù)列,且數(shù)列的第4項(xiàng)為15,求抽出的這7個(gè)樣本數(shù)據(jù)的平均值;
(3)根據(jù)國博以往展覽數(shù)據(jù)及調(diào)查統(tǒng)計(jì)信息可知,單日入館參觀人數(shù)為0~3(含3,單位:萬人)時(shí),參觀者的體驗(yàn)滿意度最佳,在從(2)中抽出的樣本數(shù)據(jù)中隨機(jī)抽取兩天的數(shù)據(jù),求這兩天參觀者的體驗(yàn)滿意度均為最住的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com