已知函數(shù)

(1)當(dāng)時(shí),求的最小值;

(2)若直線對(duì)任意的都不是曲線的切線,求的取值范圍;

(3)設(shè),求的最大值的解析式

 

【答案】

(1)-2

(2)

(3)

【解析】

試題分析:解:(1)時(shí),

  2分

的最小值為-2  4分

(2)直線的斜率為-1,由題意,方程無(wú)實(shí)數(shù)解  6分

無(wú)實(shí)數(shù)解,即無(wú)實(shí)數(shù)解,

,解得  8分

(3)由題意,只需要求上的最大值

當(dāng)

  10分

當(dāng)

又由

的圖像如圖所示

當(dāng)  12分

當(dāng),的最大值在中取得

以下解不等式

當(dāng)時(shí),原不等式可化為

解得:

當(dāng)時(shí),原不等式可化為,此式無(wú)解

當(dāng)時(shí), 

當(dāng)時(shí),  14分

綜上:  16分

考點(diǎn):導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)幾何意義以及導(dǎo)數(shù)判定函數(shù)單調(diào)性以及最值的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)

已知函數(shù)。

   (1):當(dāng)時(shí),求函數(shù)的極小值;

   (2):試討論函數(shù)零點(diǎn)的個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且若向量與向量共線,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) 

(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;

(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)文科數(shù)學(xué)試卷 題型:解答題

已知函數(shù).().

  (1)當(dāng)時(shí),求函數(shù)的極值;

(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求的極小值;

(2)設(shè),求的最大值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案