18.α,β是兩個平面,m,n是兩條直線,有下列四個命題:
①如果α∥β,m?α,那么m∥β;
②若m⊥α,m⊥n,則n∥α;
③如果m⊥α,n∥α,那么m⊥n;
④如果m⊥n,m⊥α,n∥β,那么α⊥β.
其中正確的命題有①③; (填寫所有正確命題的編號)

分析 ①由面面平行的性質(zhì)定理判定真假;
②可能n?α,即可判斷出真假;
③利用線面垂直的性質(zhì)定理即可判斷出真假;
④由已知可得α與β相交或平行,即可判斷出真假.

解答 解:①由面面平行的性質(zhì)定理可得:①為真命題;
②可能n?α,因此是假命題;
③如果m⊥α,n∥α,那么m⊥n,是真命題;
④如果m⊥n,m⊥α,則n∥α或n?α,又n∥β,那么α與β相交或平行,因此是假命題.
綜上可得:只有①③是真命題.
故答案為:①③.

點評 本題考查了空間線面面面位置關(guān)系的判定及其性質(zhì)定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={0,1,4},B={y|y=x2,x∈A},則A∪B=( 。
A.{0,1,16}B.{0,1}C.{1,16}D.{0,1,4,16}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)F1,F(xiàn)2為橢圓 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點,經(jīng)過F1的直線交橢圓C于A,B兩點,若△F2AB是面積為$4\sqrt{3}$的等邊三角形,則橢圓C的方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:函數(shù)f(x)=lg(x2-2x+a)的定義域為R,命題q:對于x∈[1,3],不等式ax2-ax-6+a<0恒成立,若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x5+ax3+bx-8,且f(-2017)=10,則f(2017)等于( 。
A.-26B.-18C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)內(nèi)為增函數(shù)的是( 。
A.y=($\frac{1}{2}$)xB.y=x-2C.y=x2+1D.y=log3(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$且滿足對任意的實數(shù)x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則實數(shù)a的取值范圍是( 。
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題錯誤的是( 。
A.在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好
B.線性相關(guān)系數(shù)|r|越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱
C.由變量x和y的數(shù)據(jù)得到其回歸直線方程l:$\widehat{y}$=$\widehat$x+a,則l一定經(jīng)過P($\overline{x}$,$\overline{y}$)
D.在回歸直線方程$\widehat{y}$=0.1x+1中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量$\widehat{y}$增加0.1個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點對稱,且當(dāng)x=1時,f(x)取極小值-2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)解關(guān)于x的不等式f(x)>5mx2-(4m2+3)x(m∈R).

查看答案和解析>>

同步練習(xí)冊答案