已知雙曲線x2-
y22
=1與點P(1,2),過P點作直線l與雙曲線交于A、B兩點,若P為AB中點.
(1)求直線AB的方程;
(2)若Q(1,1),證明不存在以Q為中點的弦.
分析:(1)設(shè)出過P(1,2)點的直線AB方程,然后代入雙曲線方程,利用設(shè)而不求韋達定理求出k的值,求出AB的方程即可.
(2)按照(1)的方法,求出k=2,此時,△<0,所以這樣的直線不存在.
解答:解:(1)設(shè)過P(1,2)點的直線AB方程為y-2=k(x-1),
代入雙曲線方程得
(2-k2)x2+(2k2-4k)x-(k4-4k+6)=0.
設(shè)A(x1,y1),B(x2,y2),
則有x1+x2=-
2k2-4k
2-k2
,
由已知
x1+x2
2
=xp=1,
2k2-4k
k2-2
=2.解得k=1.
又k=1時,△=16>0,從而直線AB方程為x-y+1=0.
(2)證明:按同樣方法求得k=2,
而當k=2時,△<0,
所以這樣的直線不存在.
點評:本題考查雙曲線的運用,以及直線的一般式,通過直線與雙曲線的方程的聯(lián)立,通過設(shè)而不求韋達定理解題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個公共點,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點分別為A、B,雙曲線在第一象限的圖象上有一點P,∠PAB=α,∠PBA=β,∠APB=γ,則(  )
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=
2
2

查看答案和解析>>

同步練習冊答案