6.將函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{4}$個(gè)周期后,所得圖象對應(yīng)的解析式( 。
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

分析 先求值函數(shù)的周期,根據(jù)函數(shù)圖象的平移變換法則,我們可以得到將函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{4}$個(gè)周期后,所得圖象對應(yīng)的解析式.

解答 解:∵y=cos(2x-$\frac{π}{6}$)的周期T=$\frac{2π}{2}$=π,
∴將函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{4}$個(gè)周期后,所得圖象對應(yīng)的解析式為:
y=cos[2(x+$\frac{π}{4}$)-$\frac{π}{6}$]=cos(2x+$\frac{π}{3}$).
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換,其中根據(jù)函數(shù)圖象的平移變換法則--“左加右減”來確定平移前后,函數(shù)解析式的關(guān)系是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從4名男生和n名女生中任選2名學(xué)生參加數(shù)學(xué)競賽,已知“2人中至少有1名女生”的概率為$\frac{5}{6}$,則n等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且cosA=$\frac{{2\sqrt{5}}}{5}$,sinB=$\frac{{\sqrt{10}}}{10}$.
(Ⅰ)求角C
(Ⅱ)設(shè)a=$\sqrt{10}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的定義域?yàn)椋?2,2),導(dǎo)函數(shù)為f'(x)=x2+2cosx且f(0)=0,則滿足f(x-1)+f(x2-x)>0的實(shí)數(shù)x的范圍是(  )
A.(1,2)B.(-2,-1)∪(1,2)C.(-1,3)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若數(shù)列{an}是等比數(shù)列,Sn是其前n項(xiàng)和,且Sn=2n-a,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.具有方向的線段叫做有向線段(向量),以A為起點(diǎn),B為終點(diǎn)的有向線段記作$\overrightarrow{AB}$,已知$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$,如圖所示:如果$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow$.若D為AB的中點(diǎn),$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{a}$,若BE為AC上的中線,則用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{DC}$為$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.sin$\frac{π}{4}$sin$\frac{7π}{12}$+sin$\frac{π}{4}$sin$\frac{π}{12}$=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.2016年山西八校聯(lián)考成績出來之后,李老師拿出甲、乙兩個(gè)同學(xué)的6次聯(lián)考的數(shù)學(xué)成績,如表所示.計(jì)甲、乙的平均成績分別為${\overline{x}}_{甲}$,${\overline{x}}_{乙}$,下列判斷正確的是( 。
姓名/成績123456
125110868313292
10811689123126113
A.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,甲比乙成績穩(wěn)定B.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,乙比甲成績穩(wěn)定
C.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,甲比乙成績穩(wěn)定D.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦點(diǎn)分別為F1、F2,一條直線l經(jīng)過F1與橢圓交于A,B兩點(diǎn),若直線l的傾斜角為45°,求△ABF2的面積.

查看答案和解析>>

同步練習(xí)冊答案