A. | 4 | B. | 5 | C. | 6 | D. | $3+2\sqrt{2}$ |
分析 由指數(shù)函數(shù)可得A坐標,可得m+n=1,整體代入可得$\frac{1}{m}+\frac{2}{n}$=($\frac{1}{m}+\frac{2}{n}$)(m+n)=3+$\frac{n}{m}$+$\frac{2m}{n}$,由基本不等式可得.
解答 解:當x-1=0即x=1時,ax-1-2恒等于-1,
故函數(shù)f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點A(1,-1),
由點A在直線mx-ny-1=0上可得m+n=1,
由m>0,n>0可得$\frac{1}{m}+\frac{2}{n}$=($\frac{1}{m}+\frac{2}{n}$)(m+n)
=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$
當且僅當$\frac{n}{m}$=$\frac{2m}{n}$即m=$\sqrt{2}$-1且n=2-$\sqrt{2}$時取等號,
故選:D.
點評 本題考查基本不等式求最值,涉及指數(shù)函數(shù)的性質(zhì),屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$ | B. | x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$ | C. | (-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$ | D. | x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$ | B. | -$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{100}{3}$π | B. | 100π | C. | $\frac{50}{3}$π | D. | 50π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com