分析 由約束條件作出可行域,利用數(shù)量積的坐標(biāo)表示得到線性約束條件,由點(diǎn)到直線的距離公式求得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤1}\\{\frac{1}{2}≤x≤1}\\{0≤y≤1}\end{array}\right.$作出可行域如圖,
令z=$\overrightarrow{OA}•\overrightarrow{OB}$=2x+y,
由圖可知,當(dāng)直線z=2x+y與平面區(qū)域切于A1 時,z有最大值.
由坐標(biāo)原點(diǎn)O(0,0)到直線2x+y-z=0的距離為1,得
$\frac{|-z|}{\sqrt{5}}=1$,解得z=$\sqrt{5}$.
故答案為:$\sqrt{5}$.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了平面向量的數(shù)量積運(yùn)算,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{15}$ | D. | $\frac{7}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 3或-11 | C. | -3 | D. | -3或11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com