(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點
是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線
和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
試題分析:(I)設橢圓的標準方程為
又∵C在橢圓上,
∴橢圓的標準方程為
…………5分
(II)設
∵CO的斜率為-1,
∴設直線
的方程為
代入
劉
又C到直線
的距離
的面積
當且僅當
時取等號,此時
滿足題中條件,
∴直線
的方程為
…………13分
點評:本題考查橢圓方程的求法和弦長的運算,解題時要注意橢圓性質(zhì)的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯(lián)立方程→消元→韋達定理→弦長公式。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C:
=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓
C的方程;
(Ⅱ)設直線
l與橢圓
C交于
A、B兩點,坐標原點
O到直線
l的距離為
,求△
AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直角坐標系
中,點
,點
為拋物線
的焦點,
線段
恰被拋物線
平分.
(Ⅰ)求
的值;
(Ⅱ)過點
作直線
交拋物線
于
兩點,設直線
、
、
的斜率分別為
、
、
,問
能否成公差不為零的等差數(shù)列?若能,求直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設拋物線
的焦點為
,準線為
,
為拋物線上的一點,
,垂足為
.若直線
的斜率為
,則
A.4 | B.8 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
F1和
F2分別是雙曲線
的左、右焦點,P是雙曲線左支的一點,
,
,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
的實軸長是虛軸長的2倍,則rn=
A. | B. | C.2 | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線y
2=2Px,過點A(2,4),F(xiàn)為焦點,定點B的坐標為(8,-8),則|AF|∶|BF|值為
查看答案和解析>>