(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.
(I);(II),

試題分析:(I)設橢圓的標準方程為


又∵C在橢圓上,

∴橢圓的標準方程為     …………5分
(II)設
∵CO的斜率為-1,
∴設直線的方程為
代入


又C到直線的距離
的面積

當且僅當時取等號,此時滿足題中條件,
∴直線的方程為    …………13分
點評:本題考查橢圓方程的求法和弦長的運算,解題時要注意橢圓性質(zhì)的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯(lián)立方程→消元→韋達定理→弦長公式。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點,點為拋物線的焦點,
線段恰被拋物線平分.
(Ⅰ)求的值;
(Ⅱ)過點作直線交拋物線兩點,設直線、的斜率分別為、、,問能否成公差不為零的等差數(shù)列?若能,求直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線與曲線有四個不同的交點,則實數(shù)m的取值范圍是(   )
A.(,)B.(,0)∪(0,)
C.[,]D.(,)∪(,+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線的焦點為,準線為,為拋物線上的一點,,垂足為.若直線的斜率為,則
A.4B.8C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1F2分別是雙曲線的左、右焦點,P是雙曲線左支的一點, ,,則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的實軸長是虛軸長的2倍,則rn=
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點在圓上,則            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=2Px,過點A(2,4),F(xiàn)為焦點,定點B的坐標為(8,-8),則|AF|∶|BF|值為
A.1∶4B.1∶2C.2∶5D.3∶8

查看答案和解析>>

同步練習冊答案