若曲線與曲線有四個不同的交點,則實數(shù)m的取值范圍是(   )
A.()B.(,0)∪(0,)
C.[,]D.()∪(,+)
B

試題分析:

由題意可知曲線表示一個圓,化為標(biāo)準(zhǔn)方程得:,所以圓心坐標(biāo)為,半徑;表示兩條直線,由直線可知:此直線過定點,在平面直角坐標(biāo)系中畫出圖象如圖所示:當(dāng)直線與圓相切時,由圓心到直線的距離等于圓半徑,解得,則直線與圓相交時,實數(shù)m的取值范圍是(,0)∪(0,).
點評:此題考查學(xué)生掌握直線與圓的位置關(guān)系,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道中檔題.本題的突破點是理解曲線表示兩條直線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把橢圓的長軸分成等份,過每個分點作軸的垂線交橢圓的上半部分于七個點,是橢圓的一個焦點則________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=4x2的準(zhǔn)線方程是                                     (    )
A.x=1B.C.y=-1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率,過M的右焦點F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點N(t,0)是一個動點,且,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,橢圓、與雙曲線、的離心率分別是、、, 則、、、的大小關(guān)系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知的頂點分別為雙曲線的左右焦點,頂點在雙曲線上,則的值等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,拋物線的頂點為坐標(biāo)原點,焦點軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案