5.二項式(2x-$\frac{1}{\sqrt{x}}$)n展開式中的第5項為常數(shù)項,則展開式中各項的二項式系數(shù)之和為64.

分析 T5=${∁}_{n}^{4}$$(2x)^{n-4}(-\frac{1}{\sqrt{x}})^{4}$=${∁}_{n}^{4}$2n-4xn-6,令n-6=0,解得n.再利用展開式中各項的二項式系數(shù)之和為2n,即可得出.

解答 解:T5=${∁}_{n}^{4}$$(2x)^{n-4}(-\frac{1}{\sqrt{x}})^{4}$=${∁}_{n}^{4}$2n-4xn-6,
令n-6=0,解得n=6.
∴展開式中各項的二項式系數(shù)之和為26=64.
故答案為:64.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$(2x-1){(\frac{1}{x}+2x)^6}$的展開式中的常數(shù)項是-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平面四邊形ABCD中,點E、F分別是邊AD、BC的中點,且AB=1,EF=$\sqrt{2}$,CD=$\sqrt{5}$,若$\overrightarrow{AD}•\overrightarrow{BC}$=15,則$\overrightarrow{AC}•\overrightarrow{BD}$的值為( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{1}{2}$tan$\frac{π}{3}$cos2x的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列命題:
(1)設(shè)f(x)與g(x)是定義在R上的兩個函數(shù),若|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)為奇函數(shù),則g(x)也是奇函數(shù);
(2)若?x1,x2∈R,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,且函數(shù)f(x)在R上遞增,則f(x)+g(x)在R上也遞增;
(3)已知a>0,a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{a-x,x>1}\end{array}\right.$,若函數(shù)f(x)在[0,2]上的最大值比最小值多$\frac{5}{2}$,則實數(shù)a的取值集合為$\left\{{\frac{1}{2}}\right\}$;
(4)存在不同的實數(shù)k,使得關(guān)于x的方程(x2-1)2-|x2-1|+k=0的根的個數(shù)為2個、4個、5個、8個.則所有正確命題的序號為(1)、(2)、(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若△ABC的三條邊a、b、c滿足(a+b):(b+c):(c+a)=7:9:10,則△ABC( 。
A.一定是銳角三角形
B.一定是直角三角形
C.一定是鈍角三角形
D.可能是銳角三角形也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4-{2}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$則f(f(8))等于(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+(\frac{1}{2})^{x},x<0}\\{\sqrt{x}+1,x≥0}\end{array}\right.$,則“x2-x-2>0”是“f(x)>3”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x>3時,不等式x+$\frac{1}{x-1}$≥a恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,3]B.[3,+∞)C.[$\frac{7}{2}$,+∞)D.(-∞,$\frac{7}{2}$]

查看答案和解析>>

同步練習(xí)冊答案