6.已知集合A={y|y=$\frac{4}{x}$,x,y∈N},B={y|y=$\frac{16}{x}$,x,y∈N},集合C滿足A⊆C?B,試用列舉法寫出所有的滿足條件的集合C.

分析 求出集合A,B,然后利用子集的概念求解C即可.

解答 解:集合A={y|y=$\frac{4}{x}$,x,y∈N}={1,2,4},
B={y|y=$\frac{16}{x}$,x,y∈N}={1,2,4,8,16},
集合C滿足A⊆C?B,
可得C可能為:{1.2.4};{1,2,4,8};{1,2,4,16}.

點(diǎn)評 本題考查集合的包含關(guān)系,集合的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.曲線y=sin3x在點(diǎn)M($\frac{π}{3}$,0)處的切線的斜率為 ( 。
A.1B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1>1,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2.則當(dāng)a2016-4a1取得最小值時(shí),a1的值為=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y+1≥0}\\{x-y+2≥0}\\{3x+y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax-y僅在點(diǎn)(0,2)處取得最小值,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3)B.(3,+∞)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=πtanx+1圖象的對稱中心坐標(biāo)是( 。
A.(kπ,1)(k∈Z)B.($\frac{π}{2}$+kπ,1)(k∈Z)C.($\frac{1}{2}$kπ,0)(k∈Z)D.($\frac{1}{2}$kπ,1)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|x2-1<0},則A∩B=( 。
A.B.{x|0≤x<1}C.{x|x≥0}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某程序框圖如圖所示,現(xiàn)將輸出(x,y)值依次記為:(x1,y1),(x2,y2),…,(xn,yn),…若程序運(yùn)行中輸出的一個(gè)數(shù)組是(x,-10),則數(shù)組中的x=( 。
A.32B.24C.18D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=4x3-2ax+a在R上單調(diào)遞增,則a的取值范圍a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.2sin75°cos15°-1=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案