18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,對(duì)于任意x1∈R且x1≠0,均存在唯一實(shí)數(shù)x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是( 。
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

分析 根據(jù)f(x)在[0,+∞)上的單調(diào)性和值域結(jié)合函數(shù)性質(zhì)判斷f(x)在(-∞,0)上的單調(diào)性和值域,得出a,b,m的關(guān)系,根據(jù)|f(x)|=f(m)有4個(gè)不相等的實(shí)數(shù)根可知0<f(m)<f(0),解出m即可.

解答 解:由題意可知f(x)在[0,+∞)上單調(diào)遞增,值域?yàn)閇m,+∞),
∵對(duì)于任意x1∈R且x1≠0,均存在唯一實(shí)數(shù)x2,使得f(x2)=f(x1),
∴f(x)在(-∞,0)上是減函數(shù),值域?yàn)椋╩,+∞),
∴a<0,b=m.
∵|f(x)|=f(m)有4個(gè)不相等的實(shí)數(shù)根,
∴0<f(m)<-m,又m<-1,
∴0<am+b<-m,即0<(a+1)m<-m,
∴-2<a<-1.
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)應(yīng)用,函數(shù)圖象的意義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a>0,b>0,且a+2b=$\frac{4}{a}$+$\frac{2}$
(1)證明a+2b≥4;
(2)若(a-1)(b-1)>0,求$\frac{1}{lo{g}_{2}a}$+$\frac{3}{lo{g}_{2}b}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.平面直角坐標(biāo)系中,在由x軸、x=$\frac{π}{3}$、x=$\frac{5π}{3}$和y=2所圍成的矩形中任取一點(diǎn),滿足不等關(guān)系y≤1-sin3x的概率是( 。
A.$\frac{4π}{3}$B.$\frac{π}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC是邊長(zhǎng)為$2\sqrt{3}$的正三角形,EF為△ABC的外接圓O的一條直徑,M為△ABC的邊上的動(dòng)點(diǎn),則$\overrightarrow{ME}•\overrightarrow{FM}$的最大值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)變量x,y滿足線性約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$則目標(biāo)函數(shù)z=2x+4y的最小值是( 。
A.6B.-2C.4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a4=9,a3+a7=22.
(1)求an和Sn;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=2sinxcosx-sin2x+1,當(dāng)x=θ時(shí)函數(shù)y=f(x)取得最小值,則$\frac{sin2θ+cos2θ}{sin2θ-cos2θ}$=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x|(x-3)(x+1)<0},B={x|x>1},則A∩B=( 。
A.{x|x>3}B.{x|x>1}C.{x|-1<x<3}D.{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn),若點(diǎn)F關(guān)于雙曲線的一條漸近線的對(duì)稱點(diǎn)P恰好落在雙曲線的左支上,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案