【題目】設(shè)數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn , b1= 且3Sn=Sn1+2(n≥2,n∈N).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn為數(shù)列{cn}的前n項(xiàng)和,Tn<m對(duì)n∈N*恒成立,求m的最小值.

【答案】解:(Ⅰ) 數(shù)列{an}為等差數(shù)列,公差d= (a7﹣a5)=3,易得a1=2,
所以an=3n﹣1
由3Sn=Sn1+2(n≥2,n∈N),得3Sn=Sn﹣bn+2,即bn=2﹣2Sn ,
所以b2=2﹣(b1+b2
, 又 ,所以b2= , =
由3Sn=Sn1+2,當(dāng)n≥3時(shí),得3Sn1=Sn2+2,
兩式相減得:3(Sn﹣Sn1)=Sn1﹣Sn2 , 即3bn=bn1 , 所以 = (n≥3)
= ,所以{bn}是以 為首項(xiàng), 為公比的等比數(shù)列,于是bn=2
(Ⅱ)cn=anbn=2(3n﹣1) ,
∴Tn=2[2 +5 +8 +…+(3n﹣1) ],
Tn=2[2 +5 +…+(3n﹣4) +(3n﹣1) ],
兩式相減得 Tn=2[3 +3 +3 +…+3 ﹣(3n﹣1) ]
=2[1+ + + +…+ ﹣(3n﹣1) ]
=2× ﹣2(3n﹣1)
所以Tn= ,
從而Tn= ,
∵Tn<m對(duì)n∈N+恒成立,∴m≥ ∴m的最小值是
【解析】(Ⅰ)依題意,可求得等差數(shù)列{an}的公差d=3,a1=2,從而可得數(shù)列{an}的通項(xiàng)公式;再由b1= 且3Sn=Sn1+2(n≥2,n∈N),可求得 = (n≥3), = ,從而可得{bn}是以 為首項(xiàng), 為公比的等比數(shù)列,于是可求{bn}的通項(xiàng)公式;(Ⅱ)cn=anbn=2(3n﹣1) ,利用錯(cuò)位相減法可求得{cn}的前n項(xiàng)和Tn , 依題意可得Tn<m對(duì)n∈N*恒成立時(shí)m的最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= .

(1)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<0;

(2)若當(dāng)a>0時(shí),f(x)<0在x [1,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3與a5的等比中項(xiàng)為2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng) 最大時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),取得極值.

(1)求的值;

(2)若函數(shù)的極大值大于20,極小值小于5,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司一下屬企業(yè)從事某種高科技產(chǎn)品的生產(chǎn).該企業(yè)第一年年初有資金2000萬(wàn)元,將其投入生產(chǎn),到當(dāng)年年底資金增長(zhǎng)了50%.預(yù)計(jì)以后每年年增長(zhǎng)率與第一年的相同.公司要求企業(yè)從第一年開(kāi)始,每年年底上繳資金d萬(wàn)元,并將剩余資金全部投入下一年生產(chǎn).設(shè)第n年年底企業(yè)上繳資金后的剩余資金為an萬(wàn)元.
(Ⅰ)用d表示a1 , a2 , 并寫(xiě)出an+1與an的關(guān)系式;
(Ⅱ)若公司希望經(jīng)過(guò)m(m≥3)年使企業(yè)的剩余資金為4000萬(wàn)元,試確定企業(yè)每年上繳資金d的值(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xln(1+x)﹣a(x+1),其中a為實(shí)常數(shù).
(1)當(dāng)x∈[1,+∞)時(shí),f′(x)>0恒成立,求a的取值范圍;
(2)求函數(shù) 的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,已知,(n∈N*)

(1)求數(shù)列的通項(xiàng)公式

(2)(λ為非零常數(shù)),問(wèn)是否存在整數(shù)λ使得對(duì)任意n∈N*都有?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線的圖象的相鄰兩個(gè)交點(diǎn)的橫坐標(biāo)分別是,現(xiàn)有如下命題:

該函數(shù)在上的值域是

上,當(dāng)且僅當(dāng)時(shí)函數(shù)取最大值;

該函數(shù)的最小正周期可以是;

的圖象可能過(guò)原點(diǎn).

其中的真命題有__________(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量 =(a,c), =(1﹣2cosA,2cosC﹣1),
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若 ,且角A是△ABC中最大內(nèi)角,求角A的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案