【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務志愿者培訓后,組織一次 知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分數(shù)段內的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.
(1)試確定受獎勵的分數(shù)線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務,試求2人成績都在90分以上的概率.
【答案】(1)86.(2)
【解析】
試題分析:(1)由頻率分布直方圖知,小長方體面積為對應概率,因此競賽成績在分的人數(shù)為,不足20,故受獎勵分數(shù)線在之間,設受獎勵分數(shù)線為,(2)先按分層抽樣確定分數(shù)在 的抽取2人,分數(shù)在的抽取3人,再利用枚舉法確定所有的可能情況10種,滿足條件的只有3種,最后根據古典概型概率求法得結果
試題解析:(1)由頻率分布直方圖知,競賽成績在分的人數(shù)為,競賽成績在的人數(shù)為,故受獎勵分數(shù)線在之間,設受獎勵分數(shù)線為,則,解得,故受獎勵分數(shù)線為86.
(2)由(1)知,受獎勵的20人中,分數(shù)在的人數(shù)為8,分數(shù)在的人數(shù)為12,利用分層抽樣,可知分數(shù)在 的抽取2人,分數(shù)在的抽取3人,設分數(shù)在的2人分別為,分數(shù)在的3人分別為,所有的可能情況有滿足條件的情況有,所求的概率為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點在平面上的射影恰好是線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin x,g(x)=mx- (m為實數(shù)).
(1)求曲線y=f(x)在點處的切線方程;
(2)求函數(shù)g(x)的單調遞減區(qū)間;
(3)若m=1,證明:當x>0時,f(x)<g(x)+.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ-2cos θ-6sin θ+=0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點,點P的坐標為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.
(1)求證:MN//平面ACC1A1;
(2)求點N到平面MBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓于, 兩點, 的周長為16, 的周長為12.
(1)求橢圓的標準方程與離心率;
(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 .
(1)若直線與和和圖象均相切,求直線的方程;
(2)是否存在使得按某種順序組成等差數(shù)列?若存在,這樣的有幾個?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,平面α與棱AB,AC,A1C1,A1B1分別交于點E,F(xiàn),G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有( )
A. ①② B. ②③
C. ①③ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com