【題目】在試制某種洗滌劑新產(chǎn)品時(shí),不同添加劑的種類以及添加的順序?qū)Ξa(chǎn)品的性質(zhì)都有影響,需要對(duì)各種不同的搭配方式做實(shí)驗(yàn)進(jìn)行比較.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用,根據(jù)試驗(yàn)設(shè)計(jì)原理,需要隨機(jī)選取兩種不同的添加劑先后添加進(jìn)行實(shí)驗(yàn).

(1)求兩種添加劑芳香度之和等于5的概率;

(2)求兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大的概率.

【答案】(1);(2)

【解析】分析:(1)利用列舉法,所有的選法共有,而滿足“兩種添加劑芳香度之和等于5”的選法用列舉法求得只有4,由此求得兩種不同的添加劑的芳香度之和等于5的概率;(2)用列舉法求得“兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大”,共有共11種,結(jié)合(1利用古典概型概率公式可得結(jié)果.

詳解設(shè)試驗(yàn)中先添加的添加劑芳香度為后添加的為,試驗(yàn)結(jié)果記為則基本事件包括:

,共30種結(jié)果.

(1)設(shè)“兩種添加劑芳香度之和等于5”為事件,

則事件包含的結(jié)果有,共4種,故.

(2)設(shè)“兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大”為事件,

則事件包含的結(jié)果有,共11種,故.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃在某水庫(kù)建一座至多安裝 臺(tái)發(fā)電機(jī)的水電站,過(guò)去 年的水文資料顯示,水庫(kù)年入流量 (年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上,不足 的年份有 年,不低于 且不超過(guò) 的年份有 年,超過(guò) 的年份有 年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái) 年中,設(shè) 表示流量超過(guò) 的年數(shù),求 的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量 限制,并有如下關(guān)系:

年入流量

發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)

1

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為 萬(wàn)元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損 萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是( )
A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50人
B.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C.由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)
D.在數(shù)列{an}中,a1=1,an (an1 )(n≥2),由此歸納出{an}的通項(xiàng)公

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長(zhǎng)交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開(kāi)平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績(jī)記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績(jī)的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (其中 為參數(shù)),曲線 ,以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線 的普通方程和曲線 的極坐標(biāo)方程;
(2)若射線 )與曲線 分別交于 , 兩點(diǎn),求 .

查看答案和解析>>

同步練習(xí)冊(cè)答案