【題目】設函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數(shù)a的最小值.
【答案】
(1)
解:由已知,h(x)=f(x)﹣g(x)=x2﹣2ax+3a+3=0在[﹣2,0]上有兩個不同的實數(shù)解,
所以 ,
即 ,
解得 ,
(2)
解:由已知, ,
(1)+(2)得 ,得a≥3,
再由(2)得x0≤2,由(1)得 ,得x0>1,
于是,問題等價于:a≥3,且存在x0∈(1,2]滿足 ,
令t=x0﹣1∈(0,1], ,
因為 在(0,1]上單調(diào)遞減,
所以φ(t)≥φ(1)=7,即a≥7,
故實數(shù)a的最小值為7.
【解析】(1)由h(x)在區(qū)間內(nèi)的兩個零點,結合圖形,得到需要滿足的條件.(2)由f(x0)≤0與g(x0)≤0同時成立,得到得a≥3,可將問題轉化為最值問題,由單調(diào)性得到最值,即可.
科目:高中數(shù)學 來源: 題型:
【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓的圓心為,直線過點且與軸不重合,交圓于兩點,過作的平行線交于點.
(1)證明:為定值,并寫出點的軌跡方程;
(2)設點的軌跡為曲線,直線交于兩點,為坐標原點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若學生一天學習數(shù)學超過兩個小時的概率為(每天是相互獨立沒有影響的),一周內(nèi)至少有四天每天學習數(shù)學超過兩個小時,就說該生本周數(shù)學學習是投入的.
(Ⅰ)①設學生本周一天學習數(shù)學超過兩個小時的天數(shù)為求的分布列與數(shù)學期望
②求學生本周數(shù)學學習投入的概率.
(Ⅱ)為了研究學生學習數(shù)學的投入程度和本周數(shù)學周練成績的關系,隨機在年級中抽取了名學生進行調(diào)查,所得數(shù)據(jù)如下表所示:
成績理想 | 成績不太理想 | 合計 | |
數(shù)學學習投入 | 20 | 10 | 30 |
數(shù)學學習不太投入 | 10 | 15 | 25 |
合計 | 30 | 25 | 55 |
根據(jù)上述數(shù)據(jù)能否有的把握認為“學生學習數(shù)學的投入程度和本周數(shù)學成績兩事件有關”?
附:
10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設:當時,不等式 恒成立;Q:當時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設H是PB上的動點,求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com