(本小題滿分10分)
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

(1) a=2   (2) (-∞,5).

解析試題分析:解法一:(1)由f(x)≤3,得|x-a|≤3,解得a-3≤xa+3.
又已知不等式f(x)≤3的解集為{x|-1≤x≤5},
所以解得a=2.
(2)當a=2時,f(x)=|x-2|.設g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=
所以當x<-3時,g(x)>5;當-3≤x≤2時,g(x)=5;當x>2時,g(x)>5.
綜上可得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m,即g(x)≥m對一切實數(shù)x恒成立,
m的取值范圍為(-∞,5].
解法二:(1)同解法一.
(2)當a=2時,f(x)=|x-2|,設g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(當且僅當-3≤x≤2時等號成立)得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m,即g(x)≥m對一切實數(shù)x恒成立,
m的取值范圍為(-∞,5).
考點:絕對值不等式的解法;函數(shù)恒成立問題.
點評:本題考查函數(shù)恒成立問題,絕對值不等式的解法,考查轉化思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
①當時,求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調性;
③若函數(shù)處取得極值,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

證明函數(shù)f(x)=x+在(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)="|x-1|" +|x-a|,.
(I)當a =4時,求不等式的解集;
(II)若恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:函數(shù)
(1)求函數(shù)時的值域;
(2)求函數(shù)時的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=。
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并證明;
(3)判斷函數(shù)f(x)在定義域上的單調性,并用定義證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)設,討論的單調性;
(Ⅱ)若對任意恒有,求的取值范圍。

查看答案和解析>>

同步練習冊答案