【題目】設函數(shù)

(1)是函數(shù)的一個極值點,試求的單調(diào)區(qū)間;

(2),是否存在實數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實數(shù)a的值;若不存在,請說明理由.

【答案】(1)答案不唯一,見解析;(2)存在,

【解析】

1)確定函數(shù)的定義域,求出導函數(shù),根據(jù)是極值點則得到,代入導函數(shù)消去,對參數(shù)分類討論。

2)若可分析出函數(shù)的單調(diào)性,即可判定在區(qū)間的最大值為中的較大者,構造函數(shù)比較的大小,即可求出實數(shù)的值。

解:(1)函數(shù)的定義域為

是函數(shù)的一個極值點,

,即

①當時,令,,

的增區(qū)間為,減區(qū)間為;

②當時,令,.

的增區(qū)間為減區(qū)間

③當時,不符合題意;

④當時,令,令

的增區(qū)間為減區(qū)間

2)當時,

,∴當,故為減函數(shù)

∴當時,最大值為中的較大者

,

在區(qū)間上為增函數(shù),

,

故存在實數(shù),使得在區(qū)間上的最大值為4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數(shù)的值及拋物線的準線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、點,求兩條弦的弦長之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中

1)討論在其定義域上的單調(diào)性;

2)當時,求取得最大值和最小值時的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若函數(shù)的圖像經(jīng)過變換后所得的圖像對應的函數(shù)與的值域相同,則稱變換的同值變換,下面給出了四個函數(shù)與對應的變換:

將函數(shù)的圖像關于軸作對稱變換;

將函數(shù)的圖像關于軸作對稱變換;

將函數(shù)的圖像關于點(-1,1)作對稱變換;

將函數(shù)的圖像關于點(-1,0)作對稱變換;

其中的同值變換的有_______.(寫出所有符合題意的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點軸左側(不含軸)一點,拋物線上存在不同的兩點、,滿足、的中點均在拋物線.

1)求拋物線的焦點到準線的距離;

2)設中點為,且,,證明:;

3)若是曲線)上的動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)試討論函數(shù)的單調(diào)性;

2)若使得都有恒成立,且,求滿足條件的實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,內(nèi)角A,B,C所對的邊長分別是a,b,c.

(1)若,,且的面積為,求的值;

(2)若 ,試判斷ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義運算:對于任意,(等式的右邊是通常的加減乘運算).若數(shù)列的前n項和為,且對任意都成立.

1)求的值,并推導出用表示的解析式;

2)若,令,證明數(shù)列是等差數(shù)列;

3)若,令,數(shù)列滿足,求正實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過多年的運作,雙十一搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2014雙十一網(wǎng)購狂歡節(jié),某廠家擬投入適當?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在雙十一的銷售量p萬件與促銷費用x萬元滿足(其中a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為

元/件,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.

(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);

(2)促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

同步練習冊答案