5.填空題
(1)sin240°=$-\frac{\sqrt{3}}{2}$,cos120°=$-\frac{1}{2}$,tan240°=$\sqrt{3}$.
(2)sin225°=$\frac{\sqrt{2}}{2}$,cos135°=$-\frac{\sqrt{2}}{2}$,tan(-330°)=$-\frac{\sqrt{3}}{3}$.

分析 直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求解即可.

解答 解:(1)sin240°=-sin60°=$-\frac{\sqrt{3}}{2}$,
cos120°=-$\frac{1}{2}$,
tan240°=tan60°=$\sqrt{3}$.
(2)sin225°=-sin45°=-$\frac{\sqrt{2}}{2}$,
cos135°=-$\frac{\sqrt{2}}{2}$,
tan(-330°)=-tan30°=$-\frac{\sqrt{3}}{3}$.
故答案為:$-\frac{\sqrt{3}}{2}$;$-\frac{1}{2}$;$\sqrt{3}$;$\frac{\sqrt{2}}{2}$;$-\frac{\sqrt{2}}{2}$;$-\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,特殊角的三角函數(shù)求值,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(0,2).
(1)若向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$平行,求實(shí)數(shù)λ的值;
(2)若向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{3π}{4}$,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知cos(2π-α)=$\frac{3}{5}$,tan(π-α)>0,求cotα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=log0.1(2x2-5x-3)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,已知sinA:sinB:sinC=3:4:5,求a:b:c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.無論x取何值,多項(xiàng)式(m-1)x3+2mx2+(m+1)x+a都等于多項(xiàng)式ax2-bx+a,求(m+a)a-b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是單調(diào)函數(shù),設(shè)b、c為常數(shù)
(1)若c=0,求b的取值范圍;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是正方形,PA是四棱錐P-ABCD的高,PA=AB=2,點(diǎn)M,N,E分別是PD,AD,CD的中點(diǎn).
(1)求證:平面MNE∥平面ACP;
(2)求四面體AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且f($\frac{π}{3}$)=1,則f(x)的一個(gè)對(duì)稱中心坐標(biāo)是( 。
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案