分析 (1)由題意可知及橢圓的定義:|F1E|+|MF2|=2a,|MF1|+|MF2|=2a,即可求得a的值,利用橢圓的離心率公式即可求得b和c的值,即可求得橢圓方程;
(2)設(shè)l方程為,代入橢圓方程,由題意可知($\overrightarrow{NP}$+$\overrightarrow{NQ}$)•$\overrightarrow{PQ}$=0,利用韋達(dá)定理即可求得$\overrightarrow{NP}$+$\overrightarrow{NQ}$,$\overrightarrow{PQ}$的方向向量為(1,k),根據(jù)向量數(shù)量積的坐標(biāo)運算,即可求得k,求得直線l的方程.
解答 解:(1)設(shè)圓C與F1A的延長線切于點E,與線段AF2切于點D,
則|AD|=|AE|,|F2D|=|F2M|,|F1E|=|F1M|,
∵|AF1|+|AF2|=2a,∴|AF1|+|AD|+|DF2|=2a,
∴|F1E|+|MF2|=2a,|MF1|+|MF2|=2a,
∴(2-c)+(2+c)=2a,故a=2,由$c=\frac{{\sqrt{3}}}{2}$,可知$c=\sqrt{3},b=1$,
橢圓方程為$\frac{x^2}{4}+{y^2}=1$;
(2)由(1)可知F2($\sqrt{3}$,0),設(shè)l方程為$y=k({x-\sqrt{3}}),k≠0$,
代入橢圓方程可得$\left\{\begin{array}{l}{y=k(x-\sqrt{3})}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,
整理得:$({1+4{k^2}}){x^2}-8\sqrt{3}{k^2}x+12{k^2}-4=0$,
設(shè)P(x1,y1),Q(x2,y2),
則${x_1}+{x_2}=\frac{{8\sqrt{3}{k^2}}}{{1+4{k^2}}},{y_1}+{y_2}=k({{x_1}+{x_2}-2\sqrt{3}})=\frac{{-2\sqrt{3}k}}{{1+4{k^2}}}$,
以NP,NQ為鄰邊的平行四邊形是菱形,
∴($\overrightarrow{NP}$+$\overrightarrow{NQ}$)•$\overrightarrow{PQ}$=0,$\overrightarrow{NP}$+$\overrightarrow{NQ}$=(x1-$\frac{\sqrt{3}}{2}$,y1)+(x2-$\frac{\sqrt{3}}{2}$,y2)
=$({{x_1}+{x_2}-\sqrt{3},{y_1}+{y_2}})=({\frac{{8\sqrt{3}{k^2}}}{{1+4{k^2}}}-\sqrt{3},\frac{{-2\sqrt{3}k}}{{1+4{k^2}}}})$,
$\overrightarrow{PQ}$的方向向量為(1,k),
∴$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$-$\sqrt{3}$-$\frac{2\sqrt{3}{k}^{2}}{1+4{k}^{2}}$=0,$k=±\frac{{\sqrt{2}}}{2}$,
∴直線l的方程$y=±\frac{{\sqrt{2}}}{2}({x-\sqrt{3}})$.
點評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查韋達(dá)定理,向量的坐標(biāo)運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a≤-\frac{1}{4}$ | B. | a≤0 | C. | $a≤\frac{1}{4}$ | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.4 | B. | 1.8 | C. | 1.6 | D. | 1.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p假q真 | B. | p假q假 | C. | p真q真 | D. | p真q假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $\frac{5}{8}$ | C. | $\frac{9}{16}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com