精英家教網 > 高中數學 > 題目詳情
12.已知點M、N分別是正方體ABCD-A1B1C1D1的棱AB、BB1的中點,點E、F分別是線段D1M與C1N上的點,則滿足與直線C1D1平行的直線EF有( 。
A.0條B.1條C.2條D.無數條

分析 由題意,線段D1M與平面C1D1N,只有一個交點D1,EF與是C1D1異面直線,即可得出結論.

解答 解:由題意,線段D1M與平面C1D1N,只有一個交點D1,
∴EF與是C1D1異面直線,
故選A.

點評 本題考查空間線面、線線位置關系,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.在正方體ABCD-A1B1C1D1中,異面直線AD1,B1C所成的角的度數為90°

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.在邊長為3的等邊三角形ABC中,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,2$\overrightarrow{BC}$+$\overrightarrow{BA}$=3$\overrightarrow{BE}$,則|$\overrightarrow{DE}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知sinα=-$\frac{\sqrt{5}}{5}$,tan(α+β)=-3,π<α<$\frac{3π}{2}$,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.給定0≤x0<1對一切整數n>0,令${x_n}=\left\{\begin{array}{l}2{x_{n-1}},2{x_{n-1}}<1\\ 2{x_{n-1}}-1,2{x_{n-1}}≥1\end{array}\right.$,則使x0=x6成立的x0的個數為64.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.己知拋物線y2=4x的焦點為F,過焦點的直線與拋物線交于A,B兩點,則直線的斜率為±2$\sqrt{2}$時,|AF|+4|BF|取得最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在平面直角坐標系xoy中,O為坐標原點,已知點Q(1,2),P是動點,且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求點P的軌跡C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積;
(3)過點D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點A,B和M,N,設線段AB,MN的中點分別為E,F(xiàn).求證:直線EF恒過一定點.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數y=f(x),x∈R,對于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)=$\frac{1}{2}$,則f(-2016)=-1008.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大小.
(2)求二面角A-PD-C的正弦值.

查看答案和解析>>

同步練習冊答案