下列命題,其中正確命題的個(gè)數(shù)是
①圓柱的軸截面是過(guò)母線(xiàn)的截面中最大的一個(gè)
②用任意一個(gè)平面去截球體得到的截面一定是一個(gè)圓面
③用任意一個(gè)平面去截圓錐得到的截面一定是一個(gè)圓


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
解析:
由圓柱與球的結(jié)構(gòu)特征可知①②正確.故選擇C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
①圓(x+2)2+(y+1)2=4與直線(xiàn)x-2y=0相交,所得弦長(zhǎng)為2;
②直線(xiàn)y=kx與圓(x-cosθ)2+(y-sinθ)2=1恒有公共點(diǎn);
③若棱長(zhǎng)為3的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為108π;
④若棱長(zhǎng)為
2
的正四面體的頂點(diǎn)都在同一球面上,則該球的體積為
3
2
π

其中,正確命題的序號(hào)為
 
.寫(xiě)出所有正確命的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出的下列命題:
(1)cos47°cos13°-cos43°sin13°值為
3
2
;
(2)
a
b
=
b
c
,則
b
=
0
a
=
c
;
(3)函數(shù)f(x)=sin(sinx+cosx)的最大值為
2
+1
2

(4)函數(shù)y=Acos(ωx+φ)(A>0,ω>0)是奇函數(shù),則φ=2kπ+
π
2
(k∈z)

其中正確的命個(gè)數(shù)為(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù).
②命q:?x∈R,tanx=1;命題p:?x∈R,x2-x+1>0,命題“p∧¬q”是假命題;
③函數(shù)y=f(x)的圖象與直線(xiàn)x=a至多一個(gè)交點(diǎn).
④在△ABC中,若
AB
CA
>0,則∠A為銳角
其中正確的命題有( 。﹤(gè).(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省河西五市高三第一次聯(lián)考數(shù)學(xué)理卷 題型:選擇題

.下列四個(gè)命題

① 分別和兩條異面直線(xiàn)均相交的兩條直線(xiàn)一定是異面直線(xiàn).  

② 一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面之距離均相等,那么這兩個(gè)平面平行.

③ 一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角的平

面角相等或互補(bǔ).   

④ 過(guò)兩異面直線(xiàn)外一點(diǎn)能作且只能作出一條直線(xiàn)和這兩條異面直線(xiàn)同時(shí)相交.其中正確命

題的個(gè)數(shù)是 

A.1   B.2               C.3          D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省河西五市高三第一次聯(lián)考數(shù)學(xué)理卷 題型:選擇題

.下列四個(gè)命題

① 分別和兩條異面直線(xiàn)均相交的兩條直線(xiàn)一定是異面直線(xiàn).  

② 一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面之距離均相等,那么這兩個(gè)平面平行.

③ 一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角的平

面角相等或互補(bǔ).   

④ 過(guò)兩異面直線(xiàn)外一點(diǎn)能作且只能作出一條直線(xiàn)和這兩條異面直線(xiàn)同時(shí)相交.其中正確命

題的個(gè)數(shù)是 

A.1   B.2               C.3          D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案