(12分)
已知,,求證:
證明:                         
                       
                                  
                                      

                               
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖1,在四棱柱中,底面為正方形,側(cè)棱垂直于底面,分別是,的中點(diǎn),則以下結(jié)論中不成立的為(  ).
A.垂直B.垂直
C.異面D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿分12分)
如圖甲,直角梯形ABCD中,AB∥CD,,點(diǎn)M、N分別在AB、CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,現(xiàn)將梯形ABCD沿MN折起,使平面AMND與平面MNCB垂直(如圖乙)

(1)求證:AB∥平面DNC;
(2)當(dāng)DN的長(zhǎng)為何值時(shí),二面角D-BC-N的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,DC⊥平面ABC,EBDC,ACBCEB=2DC=2,∠ACB=120°,P、Q分別為AEAB的中點(diǎn).

(1)證明:PQ∥平面ACD;
(2)求AD與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
如圖,在四棱錐中,底面為直角梯形,且,,側(cè)面底面. 若.

(Ⅰ)求證:平面;
(Ⅱ)側(cè)棱上是否存在點(diǎn),使得平面?若存在,指出點(diǎn) 的位置并證明,若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本題滿分12分)
如圖,在五面體中,平面,,

(1)求異面直線所成的角
(2)求二面角的大小
(3)若的中點(diǎn),上一點(diǎn),當(dāng)為何值時(shí),平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐P—ABCD的底面是直角梯形,∠ABC=∠BCD =90o,AB=BC=PB=PC=2CD=2,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn),AO交BD于E.

(1)求證:PA⊥BD;
(2)求二面角P—DC—B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
在正三棱柱中,底面邊長(zhǎng)和側(cè)棱都是2,D是側(cè)棱上任意一點(diǎn).E是的中點(diǎn).

(1)求證:      平面ABD;
(2)求證:         ;
(3)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體ABCDA1B1C1D1中,既與AB共面也與CC1共面的棱的條數(shù)為(  )
A.3 B.4 C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案