【題目】已知函數(shù),.
()當(dāng)時(shí),證明:為偶函數(shù);
()若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
()若,求實(shí)數(shù)的取值范圍,使在上恒成立.
【答案】()證明見(jiàn)解析;();().
【解析】試題分析:(1)當(dāng)時(shí),的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),而,說(shuō)明為偶函數(shù);(2)在上任取、,且,則恒成立,等價(jià)于恒成立,可求得的取值范圍;(3)先證明不等式恒成立,等價(jià)于,即恒成立,利用配方法求得的最大值,即可得結(jié)果.
試題解析:()當(dāng)時(shí),,定義域關(guān)于原點(diǎn)對(duì)稱(chēng),
而,說(shuō)明為偶函數(shù).
()在上任取、,且,
則,
因?yàn)?/span>,函數(shù)為增函數(shù),得,,
而在上調(diào)遞增,得,,
于是必須恒成立,
即對(duì)任意的恒成立,
∴.
()由()、()知函數(shù)在上遞減,
在上遞增,其最小值,
且,
設(shè),則,,
于是不等式恒成立,等價(jià)于,
即恒成立,
而,僅當(dāng),
即時(shí)取最大值,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】技術(shù)員小張對(duì)甲、乙兩項(xiàng)工作投入時(shí)間(小時(shí))與做這兩項(xiàng)工作所得報(bào)酬(百元)的關(guān)系式為:,若這兩項(xiàng)工作投入的總時(shí)間為120小時(shí),且每項(xiàng)工作至少投入20小時(shí).
(1)試建立小張所得總報(bào)酬(單位:百元)與對(duì)乙項(xiàng)工作投入的時(shí)間(單位:小時(shí))的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)小張如何計(jì)劃使用時(shí)間,才能使所得報(bào)酬最高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)
(1)若,求函數(shù)的單調(diào)區(qū)間與極值;
(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且時(shí),總有成立.
求a的值;
判斷并證明函數(shù)的單調(diào)性;
求在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是:( )
①設(shè)函數(shù)可導(dǎo),則;
②過(guò)曲線外一定點(diǎn)做該曲線的切線有且只有一條;
③已知做勻加速運(yùn)動(dòng)的物體的運(yùn)動(dòng)方程是米,則該物體在時(shí)刻秒的瞬時(shí)速度是米秒;
④一物體以速度(米/秒)做直線運(yùn)動(dòng),則它在到秒時(shí)間段內(nèi)的位移為米;
⑤已知可導(dǎo)函數(shù),對(duì)于任意時(shí),是函數(shù)在上單調(diào)遞增的充要條件.
A. ①③B. ③④C. ②③⑤D. ③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若命題,則;
②若為的極值點(diǎn),則”的逆命題為真命題;
③“平面向量的夾角是鈍角”的一個(gè)充分不必要條件是“”;
④命題“,使得”的否定是:“,均有”.
其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家報(bào)刊銷(xiāo)售點(diǎn)從報(bào)社買(mǎi)進(jìn)報(bào)紙的價(jià)格是每份0.35元,賣(mài)出的價(jià)格是每份0.50元,賣(mài)不掉的報(bào)紙還可以每份0.08元的價(jià)格退回報(bào)社.在一個(gè)月(30天)里,有20天每天可以賣(mài)出400份,其余10天每天只能賣(mài)出250份.設(shè)每天從報(bào)社買(mǎi)進(jìn)的報(bào)紙的數(shù)量相同,則應(yīng)該每天從報(bào)社買(mǎi)進(jìn)多少份,才能使每月所獲得的利潤(rùn)最大?并計(jì)算該銷(xiāo)售點(diǎn)一個(gè)月最多可賺得多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com