若函數(shù)f(x)=x3-3x+a有3個不同的零點,則實數(shù)a取值范圍是
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分析:首先求導(dǎo),令導(dǎo)數(shù)為零,求出函數(shù)的極大值和極小值,要使函數(shù)f(x)=x3-3x+a有3個不同的零點,只需函數(shù)的極大值大于零,且極小值小于零,解不等式組即可求得結(jié)果.
解答: 解答:解:∵f′(x)=3x2-3=0
解得x=1或x=-1,
當(dāng)x∈(-1,1)時,f′(x)<0,f(x)在(-1,1)上單調(diào)遞減;
當(dāng)x∈(-∞,-1)∪(1,+∞)時,f′(x)>0,f(x)在(-∞,-1)、(1,+∞)上單調(diào)遞增,
故當(dāng)x=1時,f(x)取極小值-2+a,當(dāng)x=-1時,f(x)取極大值2+a,
∵f(x)=x3-3x+a有三個不同零點,
-2+a<0
2+a>0
,解得-2<a<2
∴實數(shù)a的取值范圍是:(-2,2).
故答案為:(-2,2)
點評:點評:本題主要考查函數(shù)零點的判定方法,利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)性,要使函數(shù)有三個零點,只要保證函數(shù)的極大值大于零和極小值小于零,是解題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是底面半徑為1,母線長均為2的圓錐和圓柱的組合體,則該組合體的側(cè)視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,(1≤x≤2)
x-1,(2<x≤3)
,若a∈(0,1)時,函數(shù)g(x)=f(x)-ax(x∈[1,3])的最大值與最小值的差為h(a),則h(a)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+cos2x+1.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)在[-
π
6
,
π
6
]上的最小值,并寫出取最小值時相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
x-2
x+1
(a>1).
(1)試比較f(-3)與f(-2),f(0)與f(1)的大。
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;(只寫結(jié)果,不用證明)
(3)用反證法證明方程f(x)=0沒有負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,二元一次不等式組
y≤x
x+y-2≤0
y≥0
所表示的平面區(qū)域的面積為( 。
A、1
B、
2
C、
1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,0),
b
=(
1
2
,
1
2
),則下列結(jié)論正確的是( 。
A、|
a
|=|
b
|
B、
a
b
=
2
2
C、(
a
-
b
)⊥
b
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y≤1
x+1≥0
x-y≤1
,則z=x+2y的最小值為(  )
A、3B、1C、-5D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知前6項和為36,最后6項和為180,Sn=324(n>6).
(Ⅰ)求數(shù)列的項數(shù)n;
(Ⅱ)求a9+a10的值及數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案