【題目】某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標(biāo)志,小李,小王設(shè)計的底座形狀分別為, ,經(jīng)測量米, 米, 米,
(I)求的長度;
(Ⅱ)若環(huán)境標(biāo)志的底座每平方米造價為元,不考慮其他因素,小李,小王誰的設(shè)計建造費用最低(請說明理由),最低造價為多少?()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的上頂點到右頂點的距離為,左焦點為,過點且斜率為的直線交橢圓于, 兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及的取值范圍;
(Ⅱ)在軸上是否存在定點,使恒為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),f(0)=-2,且對,yR,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1的解集為A,若A[2,3],求實數(shù)a的取值范圍;
(3)已知數(shù)列{}中, , ,記,且數(shù)列{的前n項和為,
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左焦點為,點為雙曲線右支上的一點,且與圓相切于點為線段的中點, 為坐標(biāo)原點,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四個部分,且截x軸所得線段的長為2。
(I)求⊙H的方程;
(Ⅱ)若存在過點P(0,b)的直線與⊙H相交于M,N兩點,且點M恰好是線段PN的中點,求實數(shù)b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:對任意,不等式恒成立;命題q:存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)當(dāng),若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。
區(qū)間 | |||||
人數(shù) | a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )
A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個
C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用.據(jù)市場分析,每輛單車的營運累計收入 (單位:元)與營運天數(shù)滿足.
(1)要使?fàn)I運累計收入高于800元,求營運天數(shù)的取值范圍;
(2)每輛單車營運多少天時,才能使每天的平均營運收入最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com