已知橢圓的左右焦點分別為,過且傾角為的直線交橢圓于兩點,對以下結(jié)論:①的周長為;②原點到的距離為;③;其中正確的結(jié)論有幾個

A.3                B.2                    C.1                    D.0

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點分別是,直線與橢圓交于兩點,.當(dāng)時,M恰為橢圓的上頂點,此時△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點為A,直線與直線分別相交于點,,問當(dāng)

變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點分別是F1,F(xiàn)2,過右焦點F2且斜率為k的直線與橢圓交于A,B兩點.
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案