已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,直線l:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長為直徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn).設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.如果存在,求出實(shí)數(shù)m的取值范圍,如果不存在,請說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)利用直線l:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長為直徑的圓相切,求出b的值,利用橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,即可求出a,從而可求橢圓C的方程;
(Ⅱ)在x軸上存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.設(shè)l1的方程為y=kx+2(k>0),與橢圓方程聯(lián)立,利用韋達(dá)定理,結(jié)合(
PG
+
PH
)•
GH
=0
,即可求出實(shí)數(shù)m的取值范圍.
解答: 解:(Ⅰ)e2=
1
2
=
a2-b2
a2
,得a2=2b2
,…(3分)
∵直線y=x+2與圓x2+y2=b2相切,
2
2
=b
,解得b=
2
,則a2=4.(5分)
故所求橢圓C的方程為
x2
4
+
y2
2
=1
.(6分)
(Ⅱ)在x軸上存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.…(7分)
理由如下:
設(shè)l1的方程為y=kx+2(k>0),
x2
4
+
y2
2
=1
y=kx+2
,得(1+2k2)x2+8kx+4=0

∵直線l1與橢圓C有兩個交點(diǎn),
∴△=64k2-16(1+2k2)=16(2k2-1)>0
k2
1
2
,
又∵k>0,∴k>
2
2

設(shè)G(x1,y1),H(x2,y2),則x1+x2=
-8k
1+2k2
.(9分)
PG
+
PH
=(x1-m,y1)+(x2-m,y2)
=(x1+x2-2m,y1+y2
=(x1+x2-2m,k(x1+x2)+4),
GH
=(x2-x1, y2-y1)=(x2-x1, k(x2-x1))

由于等腰三角形中線與底邊互相垂直,則(
PG
+
PH
)•
GH
=0
.(10分)
∴(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0.
(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0
(x2-x1)[(1+k2)(x1+x2)+4k-2m]=0
∵k>0,∴x2-x1≠0,
∴(1+k2)(x1+x2)+4k-2m=0,
(1+k2)(
-8k
1+2k2
)+4k-2m=0,解得
m=
-2
1
k
+2k

設(shè)y=
1
k
+2k
,當(dāng)k>
2
2
時,y′=-
1
k2
+2=
2k2-1
k2
>0

∴函數(shù)y=
1
k
+2k
(
2
2
,+∞)
上單調(diào)遞增,
y>
1
2
2
+2×
2
2
=2
2
,(12分)
m=
-2
y
-2
2
2
=-
2
2
(13分)
點(diǎn)評:本題考查橢圓的方程,考查直線與圓的位置關(guān)系,考查直線與橢圓的位置關(guān)系,考查向量知識的運(yùn)用,考查韋達(dá)定理,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
,甲、乙、丙三位同學(xué)在研究此函數(shù)的性質(zhì)時分別給出下列命題:
甲:函數(shù)f(x)為偶函數(shù);
乙:函數(shù)f(x)的值域?yàn)椋?1,1);
丙:若x1≠x2則一定有f(x1)≠f(x2
你認(rèn)為上述三個命題中正確的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),現(xiàn)以F2為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點(diǎn)M,N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)都在拋物線y2=2px(p>0)上,且拋物線的焦點(diǎn)F滿足
FA
+
FB
+
FC
=
0
,若BC邊上的中線所在直線l的方程為mx+ny-m=0(m,n為常數(shù)且m≠0).
(Ⅰ)求p的值;
(Ⅱ)O為拋物線的頂點(diǎn),△OFA、△OFB、△OFC的面積分別記為S1、S2、S3,求證:S12+S22+S32為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在10名演員中,5人能歌,8人善舞,從中選出5人,使這5人能演出一個由1人獨(dú)唱4人伴舞的節(jié)目,共有幾種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個動點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
3
2
的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
x2
3
-y2=1的左右焦點(diǎn),點(diǎn)P是橢圓C1上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)當(dāng)k1=
1
2
,在焦點(diǎn)在x軸上的橢圓C1上求一點(diǎn)Q,使該點(diǎn)到直線PA2的距離最大.
(3)試判斷乘積“k1•k2”的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則2x+3y的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案