【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA1 .
(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.
【答案】
(1)證明:連接B1A交BA1于O,
∵PB1∥平面BDA1,B1P面AB1P,面AB1P∩面BA1D=OD,
∴B1P∥OD,又O為B1A的中點,
∴D為AP中點,∴C1為A1P中點,
∴△ACD≌△PC1D,∴CD=C1D.
(2)解:∵在直三棱柱ABC﹣A1B1C1中, ,
∴AB⊥AC,
以A1為坐標(biāo)原點,以A1B1,A1C1A1A所在直線建立空間直角坐標(biāo)系如圖所示.
由(1)知C1為A1P中點,
∴A1(0,0,0),B1(1,0,0), ,P(0,2,0),
∴ , =(0,1, ),
設(shè)平面A1B1D的法向量
∵ 且 ,
∴ ,取z=2,得y=﹣1,∴
, ,
設(shè)平面PB1D的法向量 ,
則 , ,
∴ ,取x=2,得y=1,2,
∴平面PB1D的法向量
設(shè)二面角A1﹣B1D﹣P平面角為θ,
則 ,
∴
【解析】(1)連接B1A交BA1于O,由已知條件推導(dǎo)出△ACD≌△PC1D,由此能夠證明CD=C1D;(2)以A1為坐標(biāo)原點,以A1B1 , A1C1A1A所在直線建立空間直角坐標(biāo)系,利用向量法能夠求出二面角A1﹣B1D﹣P的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在凸四邊形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.設(shè)∠ABC=θ.
(1)若θ=30°,求AD的長;
(2)當(dāng)θ變化時,求BD的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,,且公差不為0,若,則( )
A. 45 B. 15 C. 10 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺不同機器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;
Ⅱ完成下列列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上含良好 | |||
合格 | |||
合計 |
已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?
附:獨立性檢驗計算公式:.
臨界值表:
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面,分別是的中點.
(1)求證:平面平面;
(2)若是線段上一點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的前項和為,,且,,成等差數(shù)列,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,若對任意,不等式 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在拋物線上,則當(dāng)點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:的焦距為2,一條準(zhǔn)線方程為x=,A,B分別為橢圓的右頂點和上頂點,點P,Q在的橢圓上,且點P在第一象限.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點P,Q關(guān)于坐標(biāo)原點對稱,且PQ⊥AB,求四邊形ABCD的面積;
(3)若AP,BQ的斜率互為相反數(shù),求證:PQ斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com