【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

【答案】D

【解析】

因?yàn)辄c(diǎn)到拋物線焦點(diǎn)距離等于點(diǎn)到拋物線的準(zhǔn)線的距離,所以到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小等價(jià)于到點(diǎn)的距離與點(diǎn)到拋物線準(zhǔn)線距離之和取得最小,如圖,由幾何性質(zhì)可得,從向準(zhǔn)線作垂線,其與拋物線交點(diǎn)就是所求點(diǎn),將代入,可得,點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為,故選D.

【方法點(diǎn)晴】本題主要考查拋物線的標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單性質(zhì)及利用拋物線的定義求最值,屬于難題.與拋物線的定義有關(guān)的最值問題常常實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化:(1)將拋物線上的點(diǎn)到準(zhǔn)線的距化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,利用“點(diǎn)與直線上所有點(diǎn)的連線中垂線段最短”原理解決.本題是將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再根據(jù)幾何意義解題的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間上任取一個(gè)數(shù)記為b

a,,求直線的斜率為的概率;

a,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,點(diǎn)的中點(diǎn)

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA1

(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右焦點(diǎn)為,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn),

已知橢圓的焦距為,且.

(1)求橢圓的方程;

(2)若過點(diǎn)的直線交橢圓兩點(diǎn),當(dāng)面積取得最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P是曲線y=x3 x+ 上的任意一點(diǎn),點(diǎn)P處的切線傾斜角為α,則α的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+alnx(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)﹣2x+2x2 , 討論函數(shù)g(x)的單調(diào)性;
(3)若(2)中函數(shù)g(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的菱形, .

(1)求證:平面平面;

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸相切于點(diǎn),且被軸所截得的弦長(zhǎng)為,圓心在第一象限.

(Ⅰ)求圓的方程;

(Ⅱ)若點(diǎn)是直線上的動(dòng)點(diǎn),過作圓的切線,切點(diǎn)為,當(dāng)△的面積最小時(shí),求切線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案