【題目】綜合題。
(1)現(xiàn)有5名男生和3名女生.若從中選5人,且要求女生只有2名,站成一排,共有多少種不同的排法?
(2)從{﹣3,﹣2,﹣1,0,1,2,3,4}中任選三個不同元素作為二次函數(shù)y=ax2+bx+c的系數(shù),問能組成多少條經(jīng)過原點且頂點在第一象限或第三象限的拋物線?
(3)已知( +2x)n , 若展開式中第5項、第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項的系數(shù).
【答案】
(1)解:分三步完成:先從3名女生中選出2名,有 種方法,再從5名男生中選出3名,有 種方法,將選擇出的5人全排列,有 ,
根據(jù)分步計數(shù)原理,共有 =3600種
(2)解:∵拋物線過原點,∴c=0,c只有1種取法;
當頂點在第一象限時,必開口向下,且對稱軸在y軸右邊,∴a<0,b>0,
∴a可取﹣1,﹣2,﹣3,有3種方法;b可取1,2,3,4,有4種方法,
共得到3×4=12條拋物線.
當頂點在第三象限時,必開口向上,且對稱軸在y軸左邊,∴a>0,b>0,
即a,b只能在1,2,3,4中取,由于a,b不相同,所以有 種取法,
得到 條拋物線…(8分) 所以共有不同的拋物線條數(shù)為 +12=24條
(3)解:( +2x)n的若展開式通項
∵第5項、第6項與第7項的二項式系數(shù)成等差數(shù)列,
∴ ,解得n=7或n=14,
∴當n=7時,二項式系數(shù)最大的項是T4和T5,
其中T4= ,T5= ,系數(shù)分別為 ,70.
∴當n=14時,二項式系數(shù)最大的項是T8= ,系數(shù)為 =3432
【解析】(1)分三步完成:先從3名女生中選出2名,有 種方法,再從5名男生中選出3名,有 種方法,將選擇出的5人全排列,有 ,根據(jù)分步計數(shù)原理即可得出.(2)由拋物線過原點,可得c=0,c只有1種取法.對頂點分類討論:當頂點在第一象限時,必開口向下,且對稱軸在y軸右邊,可得a<0,b>0.當頂點在第三象限時,必開口向上,且對稱軸在y軸左邊,可得a>0,b>0,進而得出.(3)( +2x)n的若展開式通項 ,由第5項、第6項與第7項的二項式系數(shù)成等差數(shù)列,可得 ,解得n,再利用二項式定理展開式的通項公式即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線與在公共點處有相同的切線,求實數(shù)的值;
(2)當時,若曲線與在公共點處有相同的切線,求證:點唯一;
(3)若, ,且曲線與總存在公切線,求:正實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設事件A表示“關于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機數(shù),b為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從一批有10個合格品與3個次品的產(chǎn)品中,一件一件地抽取產(chǎn)品,設各個產(chǎn)品被抽取到的可能性相同.在下列三種情況下,分別求出直到取出合格品為止時所需抽取次數(shù)x的分布列.
(1)每次取出的產(chǎn)品都不放回此批產(chǎn)品中;
(2)每次取出的產(chǎn)品都立即放回此批產(chǎn)品中,然后再取出一件產(chǎn)品;
(3)每次取出一件產(chǎn)品后總以一件合格品放回此批產(chǎn)品中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當x∈(﹣1,4]時,f(x)=x2﹣2x , 則函數(shù)f(x)在區(qū)間[0,2016]上的零點個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,且f(x)不為常值函數(shù),有以下命題: ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數(shù),
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)是R上以5為周期的可導偶函數(shù),則曲線y=f(x)在x=5處的切線的斜率為( )
A.-
B.0
C.
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com