14.若函數(shù)f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對(duì)稱,則函數(shù)f(x)的最大值等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 由函數(shù)的對(duì)稱性可得f(0)=-f(3π),代入計(jì)算可得a值,再由三角函數(shù)的最值可得.

解答 解:∵函數(shù)f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對(duì)稱,
∴f(0)=-f(2×$\frac{3π}{2}$),即f(0)=-f(3π),
代值可得a=-sin$\frac{3π}{2}$-acos$\frac{3π}{2}$,解得a=1,
∴f(x)=sin$\frac{x}{2}$+cos$\frac{x}{2}$=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{4}$),
∴函數(shù)f(x)的最大值為$\sqrt{2}$,
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及函數(shù)圖象的對(duì)稱性和三角函數(shù)最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(2x)=1og3(8x2+7),則f(1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足a${\;}_{n+1}^{2}$=2Sn+n+4,a2-1,a3,a7恰為等比數(shù)列{bn}的前3項(xiàng).
(I)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(-1)nanbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.5名學(xué)生站成一排照相,甲不站排頭、乙不站排尾的站法種數(shù)是78.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)圖數(shù)f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”,且該“拐點(diǎn)”也是該函數(shù)的對(duì)稱中心,若f(x)=2x3-3x2+x+2,則f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=( 。
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{a}$=$\frac{8}{5}$,則△ABC的形狀為( 。
A.鈍角三角形B.銳角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在正方形ABCD內(nèi)任取一點(diǎn)P,求∠APB>120°的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)A(3,4),在坐標(biāo)軸上有一點(diǎn)B,使得直線AB的斜率等于2,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線$\left\{\begin{array}{l}{x=|sinθ|}\\{y=cosθ}\end{array}\right.$(θ為參數(shù))的方程等價(jià)于( 。
A.x=$\sqrt{1-{y}^{2}}$B.y=$\sqrt{1-{x}^{2}}$C.y=±$\sqrt{1-{x}^{2}}$D.x2+y2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案