已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,=(3,-1)共線.

(1)求橢圓的離心率;

(2)設M為橢圓上任意一點,且),證明為定值.

 

【答案】

(1);(2)

【解析】

試題分析:(1)設橢圓方程為,直線AB:y=x-c,

聯(lián)立消去y可得:

令A(),B (),

,,

向量=(,), 與向量=(3,-1)共線,

所以3()+()=0,

即3(-2c)+()=0,

4()-6c=0,

化簡得:,

所以離心率為=。

(2)橢圓即: ①

設向量=(x,y),=(),=()

(x,y)=λ()+μ()

即:x=,y= 

M在橢圓上,把坐標代入橢圓方程① 得 ②

直線AB的方程與橢圓方程聯(lián)立得,由(1)

已證,所以

所以=,=,

而A,B在橢圓上 , 

全部代入②整理可得 為定值。

考點:本題主要考查向量共線的條件,直線與橢圓的位置關系。

點評:典型題,涉及直線與橢圓的位置關系問題,通過聯(lián)立方程組得到一元二次方程,應用韋達定理可實現(xiàn)整體代換,簡化解題過程。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點,斜率為1且過橢圓右焦點F(2,0)的直線交橢圓于A,B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習冊答案