【題目】若圓心為(3,1)的圓與x軸相切,則該圓的方程是( )
A.x2+y2﹣2x﹣6y+9=0
B.x2+y2+6x+2y+9=0
C.x2+y2﹣6x﹣2y+9=0
D.x2+y2+2x+6y+9=0
【答案】C
【解析】解:∵圓與x軸相切, ∴圓心X(3,1)到x軸的距離d=1=r,
∴圓的方程為(x﹣3)2+(y﹣1)2=1,即x2+y2﹣6x﹣2y+9=0,
故選:C.
【考點精析】掌握圓的一般方程是解答本題的根本,需要知道圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:kx﹣y+1=0(k∈R).若存在實數(shù)k,使直線l與曲線C交于A,B兩點,且|AB|=|k|,則稱曲線C具有性質(zhì)P.給定下列三條曲線方程:
①y=﹣|x|;
②x2+y2﹣2y=0;
③y=(x+1)2 .
其中,具有性質(zhì)P的曲線的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},則A∩(RB)=( 。
A. (2,4) B. (﹣2,4) C. (﹣2,2) D. (﹣2,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={x∈N|0<x<8},A={2,4,5},則UA=( )
A.{1,3,6,7}
B.{2,4,6}
C.{1,3,7,8}
D.{1,3,6,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是空間兩條不重合的直線,α,β是兩個不重合的平面,則下列命題中正確的是 ( )
A.m⊥α,α⊥β,m∥nn∥β
B.m⊥α,m⊥n,α∥βn∥β
C.m∥α,m⊥n,α∥βn⊥β
D.m⊥α,m∥n,α∥βn⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y=ln(x﹣1)},集合B={x|x2﹣3x>0},則A∩(RB)=( )
A.(1,3)
B.(1,3]
C.[0,+∞)
D.[3,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com