【題目】已知函數(shù) .
(Ⅰ)當 時,求不等式 的解集;
(Ⅱ)若 的解集包含 ,求實數(shù) 的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓 : ( )的焦距與橢圓 : 的短軸長相等,且 與 的長軸長相等,這兩個橢圓在第一象限的交點為 ,直線 經(jīng)過 在 軸正半軸上的頂點 且與直線 ( 為坐標原點)垂直, 與 的另一個交點為 , 與 交于 , 兩點.
(1)求 的標準方程;
(2)求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點 ,焦點在 軸上,離心率為 的橢圓過點 .
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與 軸的非負半軸交于點 ,過點 作互相垂直的兩條直線,分別交橢圓于點 , 兩點,連接 ,求 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點 在線段 上,且 .
(Ⅰ)證明:平面 平面 ;
(Ⅱ)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為半圓 的直徑,點 是半圓弧上的兩點, , .曲線 經(jīng)過點 ,且曲線 上任意點 滿足: 為定值.
(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點 的直線 與曲線 交于不同的兩點 ,求 面積最大時的直線 的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com