若P為棱長(zhǎng)為1的正四面體內(nèi)的任一點(diǎn),則它到這個(gè)正四面體各面的距離之和為_(kāi)_____.

A.     B.   C.     D.

 

【答案】

D

【解析】解:因?yàn)檎拿骟w的體積等于四個(gè)三棱錐的體積和,設(shè)它到四個(gè)面的距離分別為a,b,c,d,由于是棱長(zhǎng)為1的正四面體,故四個(gè)面的面積都是一樣的,且為

,由頂點(diǎn)到底面的投影在地底面的中心,此點(diǎn)到三個(gè)頂點(diǎn)的距離都是高的2/3,高為,故底面中心到底面頂點(diǎn)的距離都是,由此知道頂點(diǎn)到底面的距離為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閔行區(qū)二模)(文)如圖幾何體是由一個(gè)棱長(zhǎng)為2的正方體ABCD-A1B1C1D1與一個(gè)側(cè)棱長(zhǎng)為2的正四棱錐P-A1B1C1D1組合而成.
(1)求該幾何體的主視圖的面積;
(2)若點(diǎn)E是棱BC的中點(diǎn),求異面直線AE與PA1所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年湖南六校聯(lián)考文)命題:若正三棱錐的三條側(cè)棱兩兩垂直,則該正三棱錐的內(nèi)切球與外接球的半徑之比為.命題:棱長(zhǎng)為1的正方體中,點(diǎn)到平面的距離為,以下四個(gè)選項(xiàng)中,正確的是  (  )

       A. “q”為假                                         B. “q”為真     

       C. “q”為真                                         D. “非p”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三練習(xí)數(shù)學(xué) 題型:解答題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、FAB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AEFBxcm.

(1)若廣告商要求包裝盒側(cè)面積S(cm)最大,試問(wèn)x應(yīng)取何值?

(2)若廣告商要求包裝盒容積V(cm)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

(文)如圖幾何體是由一個(gè)棱長(zhǎng)為2的正方體ABCD-A1B1C1D1與一個(gè)側(cè)棱長(zhǎng)為2的正四棱錐P-A1B1C1D1組合而成.
(1)求該幾何體的主視圖的面積;
(2)若點(diǎn)E是棱BC的中點(diǎn),求異面直線AE與PA1所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市閔行區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(文)如圖幾何體是由一個(gè)棱長(zhǎng)為2的正方體ABCD-A1B1C1D1與一個(gè)側(cè)棱長(zhǎng)為2的正四棱錐P-A1B1C1D1組合而成.
(1)求該幾何體的主視圖的面積;
(2)若點(diǎn)E是棱BC的中點(diǎn),求異面直線AE與PA1所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案