【題目】已知函數(shù)的極大值為,其中為自然對數(shù)的底數(shù).

1)求實(shí)數(shù)的值;

2)若函數(shù),對任意,恒成立.

i)求實(shí)數(shù)的取值范圍;

ii)證明:.

【答案】(1)(2)(iii)證明見解析

【解析】

1)求函數(shù)定義域,然后對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,得出時(shí),有極大值,即可算出實(shí)數(shù)的值.

2)(i)由(1)知,,代入中,根據(jù),整理至即恒成立,設(shè)新函數(shù),將原問題轉(zhuǎn)化為:恒成立,分的取值范圍分類討論即可得出實(shí)數(shù)的取值范圍.(ii)要證,

轉(zhuǎn)化為證證,整理至,設(shè)兩個(gè)新函數(shù),,分別對兩個(gè)新函數(shù)求導(dǎo),判斷單調(diào)性,即可證得成立.

解:(1的定義域?yàn)?/span>,

,

,解得:,

,解得:,

所以當(dāng),為增函數(shù),當(dāng),為減函數(shù),

所以時(shí),有極大值,

所以;

2)(i)由(1)知,,

,即恒成立,

所以恒成立,

恒成立,

設(shè),則恒成立,

,

設(shè),,

原問題轉(zhuǎn)化為:恒成立,

①若,當(dāng)時(shí),

,

不合題意;

②若,則恒成立,

符合題意

③若,則,

,,令,,

所以當(dāng)時(shí),為減函數(shù),

當(dāng)時(shí),為增函數(shù),

所以,

,即;

綜上.

ii)要證,

只需證,

,即,

只需證,

設(shè),,

因?yàn)?/span>

所以上單調(diào)遞減,在上單調(diào)遞增,

所以

因?yàn)?/span>恒成立,

所以上單調(diào)遞增,

所以,則,則,

由(2)可知,,所以;

所以,

,得證.

所以 成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)矩陣M (其中a>0,b>0).

(1)若a=2,b=3,求矩陣M的逆矩陣M-1;

(2)若曲線Cx2y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:y2=1,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對某學(xué)校高二年級名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對調(diào)查中獲得的每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)的時(shí)間進(jìn)行分組整理得到如下的數(shù)據(jù):

使用時(shí)間(小時(shí))

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)小于小時(shí)的概率?若能,請算出這個(gè)概率;若不能,請說明理由;

3)若從使用手機(jī)小時(shí)和小時(shí)的兩組中任取兩人,調(diào)查問卷,看看他們對使用手機(jī)進(jìn)行娛樂活動(dòng)的看法,求這人都使用小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,、分別是線段、的中點(diǎn),,,在線段上運(yùn)動(dòng),設(shè).

1)證明:;

2)是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為?若存在,試確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019COVID19),簡稱“新冠肺炎”.下圖是2020115日至124日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.

為了預(yù)測在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)115日至124日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)

2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)以下是125日至129日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:

時(shí)間

125

126

127

128

129

累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)

1975

2744

4515

5974

7111

(。┊(dāng)125日至127日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請判斷(2)的回歸方程是否可靠?

(ⅱ)2020124日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請判斷預(yù)防措施是否有效?

附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

參考數(shù)據(jù):其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.

1)求一件手工藝品質(zhì)量為B級的概率;

2)若一件手工藝品質(zhì)量為AB,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100.

①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;

②記1件手工藝品的利潤為X元,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),使得對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.

1)求的解析式;

2)若方程有兩個(gè)實(shí)根,且,求證:.

查看答案和解析>>

同步練習(xí)冊答案