19.下列各組函數(shù)表示同一函數(shù)的是(  )
①f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x(x≥0)}\\{-x(x<0)}\end{array}\right.$ ②f(x)=$\frac{{x}^{2}-4}{x-2}$,g(x)=x+2 ③f(x)=$\sqrt{{x}^{2}}$,g(x)=x+2 ④f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$,g(x)=0,x∈{-1,1}.
A.①③B.C.②④D.①④

分析 通過(guò)去絕對(duì)值號(hào),求函數(shù)的定義域,以及化簡(jiǎn)函數(shù)解析式便可判斷f(x)和g(x)的對(duì)應(yīng)法則和定義域是否都相同,從而找出表示同一函數(shù)的序號(hào).

解答 解:①$f(x)=|x|=\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$,∴這兩個(gè)函數(shù)為同一函數(shù);
②f(x)的定義域?yàn)閧x|x≠2},g(x)的定義域?yàn)镽,∴這兩個(gè)函數(shù)不是同一函數(shù);
③f(x)=|x|,g(x)=x+2,這兩個(gè)函數(shù)的對(duì)應(yīng)法則不同,不是同一函數(shù);
④解$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-1≥0}\end{array}\right.$得,x2=1,∴x=±1;
∴f(x)=0,x∈{-1,1};
∴這兩個(gè)函數(shù)為同一函數(shù);
∴表示同一函數(shù)的為①④.
故選:D.

點(diǎn)評(píng) 考查函數(shù)的三要素:定義域,值域和對(duì)應(yīng)法則,而由定義域和對(duì)應(yīng)法則即可確定一個(gè)函數(shù),從而得到判斷兩函數(shù)是否為同一函數(shù)的方法:求定義域,化簡(jiǎn)函數(shù)解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若二次函數(shù)y=x2+mx+4的圖象與x軸沒(méi)有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-4,4)B.[-4,4]C.(-∞,-4)∪(4,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.圓C:x2+(y+3)2=8關(guān)于直線y=x的對(duì)稱曲線為曲線C′,直線y=x+m-3與曲線C′交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),△ABO的面積為$\sqrt{7}$.
(1)求曲線C′的方程.
(2)求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=(x+6)(x-7),g(x)=ax2-(3a+1)x+3,其中a<0,若存在6個(gè)整數(shù)x0,有f(x0)<0與g(x0)<0同時(shí)成立,則a的值可能為( 。
A.-1B.-$\frac{1}{2}$C.-$\frac{1}{3}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.我們把離心率為$\frac{\sqrt{5}+1}{2}$的雙曲線叫做黃金雙曲線.如圖,黃金雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2,若以A1,A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點(diǎn)分別為A,B,C,D,則菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值$\frac{{S}_{1}}{{S}_{2}}$=( 。
A.$\frac{\sqrt{5}+2}{2}$B.$\frac{\sqrt{5}+1}{2}$C.$\frac{\sqrt{5}-2}{2}$D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知?ABCD的面積為2,P是邊AD上任意一點(diǎn),則|PB|2+|PC|2的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)是定義域?yàn)镽的奇函數(shù),若?x∈R,f′(x)>-2,則不等式f(x-1)<x2(3-2lnx)+3(1-2x)的解集是( 。
A.(0,1)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.記min{a,b,c}為實(shí)數(shù)a,b,c中最小的一個(gè),已知函數(shù)f(x)=-x+1圖象上的點(diǎn)(x1,x2+x3)滿足:對(duì)一切實(shí)數(shù)t,不等式-t2-${2}^{{x}_{1}^{2}}$t-2${\;}^{2+{x}_{1}^{2}-{x}_{2}^{2}-{x}_{3}^{2}}$+4${\;}^{2-{x}_{2}^{2}-{x}_{3}^{2}}$≤0均成立,如果min{-x1,-x2,-x3}=-x1,那么x1的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,∠ABC=90°,且CD=2AB,點(diǎn)E在棱PB上,且PE=2EB,PA=AB=BC.
(1)求證:PD∥平面AEC;
(2)若PA=3,求三棱錐P-ACE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案