1.如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在線(xiàn)段C1E上是否存在一點(diǎn)M,使得直線(xiàn)AM與平面ADD1A1所成角的正弦值為$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,說(shuō)明理由.

分析 (Ⅰ)以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,標(biāo)出點(diǎn)的坐標(biāo)后,求出平面B1CE和平面CEC1的一個(gè)法向量,先求出兩法向量所成角的余弦值,利用同角三角函數(shù)基本關(guān)系求出其正弦值,則二面角B1-CE-C1的正弦值可求;
(Ⅱ)利用共線(xiàn)向量基本定理把M的坐標(biāo)用E和C1的坐標(biāo)及待求系數(shù)λ表示,求出平面ADD1A1的一個(gè)法向量,利用向量求線(xiàn)面角的公式求出直線(xiàn)AM與平面ADD1A1所成角的正弦值,求出λ的值即可求.

解答 解:(Ⅰ)以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,如圖,
依題意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).
設(shè)平面B1CE的法向量為$\overrightarrow{m}=(x,y,z)$,
可得$\overrightarrow{{B}_{1}C}=(1,-2,1)$,$\overrightarrow{CE}=(-1,1,-1)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{B}_{1}C}=x-2y-z=0}\\{\overrightarrow{m}•\overrightarrow{CE}=-x+y-z=0}\end{array}\right.$,可得$\overrightarrow{m}=(-3,-2,1)$,
又B1C1⊥平面CEC1,故$\overrightarrow{{B}_{1}{C}_{1}}=(1,0,-1)$為平面CEC1的一個(gè)法向量,
cos$<\overrightarrow{m},\overrightarrow{{B}_{1}{C}_{1}}>$=$\frac{\overrightarrow{m}•\overrightarrow{{B}_{1}{C}_{1}}}{|\overrightarrow{m}||\overrightarrow{{B}_{1}{C}_{1}}|}$=-$\frac{2\sqrt{7}}{7}$,sin$<\overrightarrow{m},\overrightarrow{{B}_{1}{C}_{1}}>$=$\frac{\sqrt{21}}{7}$,
所以二面角B1-CE-C1的正弦值為$\frac{\sqrt{21}}{7}$,
(Ⅱ)可得$\overrightarrow{AE}=(0,1,0),\overrightarrow{E{C}_{1}}=(1,1,1)$.$\overrightarrow{AB}$=(0,0,2)為平面ADD1A1的一個(gè)法向量,
設(shè)$\overrightarrow{EM}=λ\overrightarrow{E{C}_{1}}=(λ,λ,λ),(0≤λ≤1)$,則$\overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{EM}=(λ,λ+1,λ)$.
設(shè)θ為直線(xiàn)AM與平面ADD1A1所成的角,
則sinθ=cos$<\overrightarrow{AM},\overrightarrow{AB}>$=$\frac{λ}{\sqrt{{λ}^{2}+(λ+1)^{2}+{λ}^{2}}×2}$=$\frac{\sqrt{2}}{6}$,得$λ=\frac{1}{3}$,
∴EM:MC1=1:2.
∴在線(xiàn)段C1E上存在一點(diǎn)M,使得直線(xiàn)AM與平面ADD1A1所成角的正弦值為$\frac{{\sqrt{2}}}{6}$,且EM:MC1的值為$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了直線(xiàn)與平面垂直的性質(zhì),考查了線(xiàn)面角和二面角的求法,運(yùn)用了空間向量法,運(yùn)用此法的關(guān)鍵是建立正確的空間坐標(biāo)系,再就是理解并掌握利用向量求線(xiàn)面角及面面角的正弦值和余弦值公式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.84,則P(ξ≤-2)=0.16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.y=cos2x-1,則f(x)是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為2π的奇函數(shù)D.最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)(  )
A.三個(gè)內(nèi)角都不大于 60°B.三個(gè)內(nèi)角至多有一個(gè)大于 60°
C.三個(gè)內(nèi)角都大于60°D.三個(gè)內(nèi)角至多有兩個(gè)大于 60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖為函數(shù)y=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分,則該函數(shù)解析式為y=3sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.過(guò)點(diǎn)(1,0)且與直線(xiàn)y=$\frac{1}{2}$x-1平行的直線(xiàn)方程是( 。
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知C=45°,b=$\sqrt{2}$,c=2,則A=105°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-1|.
(1)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(2)當(dāng)x∈R時(shí),求實(shí)數(shù)f(x)≥a2-a-13的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)(3,1)和(-1,1)在直線(xiàn)3x-2y+a=0的同側(cè),則a的取值范圍是{a|a<-7或a>5}.

查看答案和解析>>

同步練習(xí)冊(cè)答案