已知時的極值為0.
(1)求常數(shù)a,b的值;
(2)求的單調區(qū)間.
(1) a = 2,b = 9. 
(2) 由
本試題主要是考查了導數(shù)在研究函數(shù)中的運用。利用導數(shù)的符號與函數(shù)單調性的關系求解參數(shù)的值和單調區(qū)間。
(1)利用函數(shù)式求解導數(shù),然后分析時的極值為0.,說明在x=-1處的導數(shù)值為0,那么可得a,b的值。
(2)因為f (x) = x3 + 6 x 2 + 9 x + 4,
因此解二次不等式得到不等式大于零或者小于零的解集,即為單調區(qū)間。
解:(1) 由題易知
解得a = 2,b = 9.   6分
(2) f (x) = x3 + 6 x 2 + 9 x + 4,

13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)(常數(shù)).
(Ⅰ)求的單調區(qū)間;(5分)
(Ⅱ)設如果對于的圖象上兩點,存在,使得的圖象在處的切線,求證:.(7分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知是函數(shù)的一個極值點。
(1)求;         (2)求函數(shù)的單調區(qū)間;
(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于三次函數(shù),定義的導函數(shù)的導函數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,可以證明,任何三次函數(shù)都有“拐點”,任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,請你根據(jù)這一結論判斷下列命題:
①任意三次函數(shù)都關于點對稱:
②存在三次函數(shù)有實數(shù)解,點為函數(shù)的對稱中心;
③存在三次函數(shù)有兩個及兩個以上的對稱中心;
④若函數(shù),則,
其中正確命題的序號為__          _____(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下四圖,都是同一坐標系中三次函數(shù)及其導函數(shù)的圖像,其中一定不正確的序號是 (  )
A.①、②B.①、③C.③、④D.①、④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.
(Ⅰ)判斷函數(shù)的單調性并證明;
(Ⅱ)求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(Ⅰ)判斷函數(shù)的單調性;
(Ⅱ)是否存在實數(shù)、使得關于的不等式在(1,)上恒成立,若存在,求出的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在單調遞減區(qū)間,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù).
(1)求函數(shù)的單調區(qū)間;       
(2)若,試求函數(shù)在此區(qū)間上的最大值與最小值.

查看答案和解析>>

同步練習冊答案