對于三次函數(shù),定義的導(dǎo)函數(shù)的導(dǎo)函數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,可以證明,任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)對稱:
②存在三次函數(shù)有實(shí)數(shù)解,點(diǎn)為函數(shù)的對稱中心;
③存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對稱中心;
④若函數(shù),則,
其中正確命題的序號為__          _____(把所有正確命題的序號都填上).
①②④
解:因?yàn)楦鶕?jù)題意,拐點(diǎn)的定義和對稱中心的理解可知,求解導(dǎo)數(shù),然后利用導(dǎo)數(shù)的導(dǎo)數(shù)為零來判定可知選項(xiàng)①②④正確,選項(xiàng)③不成立。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、(本小題滿分9分)已知函數(shù)處取得極值。(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)已知對任意成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)設(shè)函數(shù),其中
⑴當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
⑵求函數(shù)的極值點(diǎn);
⑶證明對任意的正整數(shù),不等式成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且其導(dǎo)函數(shù)的圖像過原點(diǎn).
(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),設(shè)的最小值為恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若處取得極值為,求的值;
(2)若上是增函數(shù),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)的導(dǎo)函數(shù)為.
(Ⅰ)求的值,并比較它們的大;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知時(shí)的極值為0.
(1)求常數(shù)ab的值;
(2)求的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案