已知函數(shù)為常數(shù),),且數(shù)列是首項為,公差為的等差數(shù)列.
(1) 若,當(dāng)時,求數(shù)列的前項和;                      
(2)設(shè),如果中的每一項恒小于它后面的項,求的取值范圍.

(1)  (2)

解析試題分析:(1) 由題意,即,   1分
.  ……2分
,
當(dāng)時,.         3分
,      ①
    ②    4分
①-②,得 
 6分
   7分
(2)由(1)知,,要使對一切成立,
對一切成立.          ……8分
,對一切恒成立,
只需,   10分
單調(diào)遞增,∴當(dāng)時,.   12分
,且, ∴.     13分
綜上所述,存在實數(shù)滿足條件.    14分
考點:本題考查了數(shù)列的求和及不等式的證明
點評:數(shù)列的通項公式及應(yīng)用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個亮點,也是一種趨勢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

將邊長為米的一塊正方形鐵皮的四角各截去一個大小相同的小正方形,然后將四邊折起做成一個無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少米?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)萬件,需另投入流動成本為萬元,在年產(chǎn)量不足8萬件時,(萬元),在年產(chǎn)量不小于8萬件時,(萬元). 通過市場分析,每件產(chǎn)品售價為5元時,生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入固定成本流動成本)
(2)年產(chǎn)量為多少萬件時,在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:
(1) 
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得
(3x1-x2)(x1-3x2)=-80成立.求實數(shù)a的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)有兩個零點,且最小值是,函數(shù)的圖象關(guān)于原點對稱;
(1)求的解析式;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),若對一切恒成立.求實數(shù) 的取值范圍.(16分)

查看答案和解析>>

同步練習(xí)冊答案