已知x1、x2是關于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得
(3x1-x2)(x1-3x2)=-80成立.求實數(shù)a的所有可能值.

解析試題分析:因為x1、x2是關于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,
所以,所以,
所以,,因為,
,所以,
整理得,所以,
時,,舍去,
時,,故.
考點:根與系數(shù)的關系;根的判別式.
點評:本題考查了一元二次方程的根與系數(shù)的關系,也考查了一元
二次方程根的判別式以及代數(shù)式的變形能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當50<x≤200時,車流速度v與車流密度x滿足,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.
(Ⅰ) 當0<x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ) 當車流密度x為多大時,車流量(單位時間內通過橋上觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到個位,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設某市現(xiàn)有從事第二產業(yè)人員100萬人,平均每人每年創(chuàng)造產值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強第三產業(yè)。分流后,繼續(xù)從事第二產業(yè)的人員平均每人每年創(chuàng)造產值可增加2x%(0<x<100)。而分流出的從事第三產業(yè)的人員,平均每人每年可創(chuàng)造產值1.2a萬元。
(1)若要保證第二產業(yè)的產值不減少,求x的取值范圍;
(2)在(1)的條件下,問應分流出多少人,才能使該市第二、三產業(yè)的總產值增加最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為常數(shù),),且數(shù)列是首項為,公差為的等差數(shù)列.
(1) 若,當時,求數(shù)列的前項和;                      
(2)設,如果中的每一項恒小于它后面的項,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流
速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當50<x≤200時,車流速度v與車流密度x滿足.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.                  
(Ⅰ)當0<x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上觀測點的車輛數(shù),單位:
輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到個位,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某醫(yī)藥研究所開發(fā)一種新藥,在實驗藥效時發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量(微克)與時間(小時)之間滿足,
其對應曲線(如圖所示)過點.

(1)試求藥量峰值(的最大值)與達峰時間(取最大值時對應的值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間?(精確到0.01小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設該容器的建造費用為千元.

(1)寫出關于的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場售價與上市時間的關系用圖1的一條折線表示;西紅柿的種植成本與上市時間的關系用圖2的拋物線表示.
(1)寫出圖1表示的市場售價與時間的函數(shù)關系式;寫出圖2表示的種植成本與時間的函數(shù)關系式
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

(注:市場售價和種植成本的單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知二次函數(shù),關于的不等式的解集為,其中為非零常數(shù).設.
(1)求的值;
(2)R如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若,且,求證:N

查看答案和解析>>

同步練習冊答案