9.已知函數(shù)f(x)=x-4lnx,則曲線y=f(x)在點(1,f(1))處的切線方程為( 。
A.2x-y-3=0B.2x+y-3=0C.3x+y-4=0D.3x-y-4=0

分析 由曲線方程求得f(1)=1,求導(dǎo),由切線方程的斜率k=f′(1)=-3,由直線的點斜式方程可知y-1=-3(x-1),整理可得:y+3x-4=0.

解答 解:由f(1)=1-4ln1=1,
f′(x)=1-$\frac{4}{x}$=$\frac{x-4}{x}$,
曲線y=f(x)在點(1,f(1))處的切線斜率k=f′(1)=-3,
∴曲線的在(1,1)處的切線方程為:y-1=-3(x-1),整理得:3x+y-4=0
故選:C.

點評 本題考查利用導(dǎo)數(shù)求曲線上某點切線方程,考查導(dǎo)數(shù)的運(yùn)算,直線的點斜式方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中,不正確的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
B.命題“?x0∈R,${x}_{0}^{2}$-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline y$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長都等于1,且兩兩夾角都為45°,則|$\overrightarrow{A{C}_{1}}$|=$\sqrt{3+3\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R)
(1)當(dāng)0≤a<$\frac{1}{2}$時,討論f(x)的單調(diào)性;
(2)設(shè)g(x)=x2-2bx+4,當(dāng)a=$\frac{1}{4}$時,
(i)若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b取值范圍;
(ii)對于任意x1,x2∈(1,2]都有|f(x1)-f(x2)|≤λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=-x2-kx+2lnx-k+3.
(1)當(dāng)k=0時,其f(x)的單調(diào)區(qū)間及最大值;
(2)若不等式f(x)>0僅存在一個整數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知長方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點,如圖所示.
(1)在所給圖中畫出平面ABD1與平面B1EC的交線(不必說明理由);
(2)證明:BD1∥平面B1EC;
(3)求平面ABD1與平面B1EC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)全集U={1,2,3,4,5,6},用U的子集可表示由0,1組成的6位字符串,如:{2,4}表示的是第2個字符是1,第4個字符為1,其它均為0的6位字符串010100,并規(guī)定空集表示為000000.若A={1,3},集合A∪B表示的字符串為101001,則滿足條件的集合B的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

同步練習(xí)冊答案