17.直線$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$( t為參數(shù))傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 求出直線的普通方程得出斜率,從而得出直線的傾斜角.

解答 解:由$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$得$\sqrt{3}$x+y=$\sqrt{3}+1$,
∴直線的斜率k=-$\sqrt{3}$.
∴直線的傾斜角為$\frac{2π}{3}$.
故選C.

點評 本題考查了直線的參數(shù)方程與普通方程的轉(zhuǎn)化,直線斜率與傾斜角,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知tanθ=-2,且sinθ<0,則cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點與虛軸的一個端點構(gòu)成一個角為120°的三角形,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的離心率$e=\frac{{\sqrt{5}}}{2}$,點P是拋物線y2=4x上的一動點,P到雙曲線C的上焦點F1(0,x)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為( 。
A.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$-x2=1C.y2-$\frac{{x}^{2}}{4}$=1D.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an=2an+1-1(n∈N*),令bn=an-1.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn=$\frac{{a}_{{2}^{n}+1}}{{a}_{{2}^{n}}}$,求證:c1+c2+…+cn<n+$\frac{7}{24}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(1)求證;平面ABCD⊥平面ADE;
(2)求幾何體A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在等腰△ABC中,BD和CE是兩腰上的中線,且以BD⊥CE,求cosA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$f(x)=2{cos^2}x+\sqrt{3}sin2x+a,(a∈R)$
(1)若x∈R,求f(x)的單調(diào)增區(qū)間;
(2)若$x∈[0,\frac{π}{2}]$時,f(x)的最大值為3,求a的值;
(3)在(2)的條件下,若方程f(x)=m在$[0,\frac{3π}{4}]$上恰有兩個不等實數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在${(x-\frac{1}{2x})^6}$的展開式中,x4的系數(shù)為( 。
A.-3B.$-\frac{1}{2}$C.3D.6

查看答案和解析>>

同步練習冊答案