15.已知sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),則tan(2π-α)的值為( 。
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

分析 由題意和同角三角函數(shù)基本關(guān)系可得cosα,再由誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系可得.

解答 解:∵sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{5}}{3}$,
∴tan(2π-α)=-tanα=-$\frac{sinα}{cosα}$=$\frac{2\sqrt{5}}{5}$,
故選:B.

點評 本題考查三角函數(shù)化簡求值,涉及同角三角函數(shù)基本關(guān)系和誘導(dǎo)公式,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.連鎖水果店店主每天以每件50元購進水果若干件,以80元一件銷售;若供大于求,當天剩余水果以40元一件全部退回;若供不應(yīng)求,則立即從連鎖店60元一件調(diào)劑,以80元一件銷售.
(1)若水果店一天購進水果5件,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:件,n∈N*)的函數(shù)解析式;
(2)店主記錄了30天水果的日需求量n(單位:件)整理得表:
日需求量34567
頻數(shù)231564
若水果店一天購進5件水果,以30天記錄的各需求量發(fā)生的頻率作為概率,求每天的利潤在區(qū)間[150,200]的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$均為非零向量,則“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$與$\overrightarrow$的方向相同”的( 。
A.充要條件B.充分但不必要條件
C.必要但不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)的定義域為R,“f(x)是奇函數(shù)”是“存在x∈R,f(x)+f(-x)=0”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列四個結(jié)論:
①若p∧q是真命題,則¬p可能是真命題;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要條件;
④當a<0時,冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.
其中正確結(jié)論的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)i為虛數(shù)單位,則復(fù)數(shù)3-i的虛部是( 。
A.3B.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.
(1)求三棱錐A-FGC的體積.
(2)求證:面GEF⊥面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x-$\sqrt{3}$cos2x,則下列說法正確的是( 。
A.y=f(x)的周期為$\frac{π}{2}$B.y=f(x)在[0,$\frac{π}{6}$]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱D.y=f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,ABCD是平行四邊形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)證明:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求平面ADE與平面BCE所成二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案